Planning of Energy-Selective Neutron Imaging Instrument at CSNS and its Application Prospect in Materials Science

Article Preview

Abstract:

In order to serve a growing multidisciplinary community beyond the traditional scattering areas, an energy-selective neutron imaging instrument is proposed in the China Spallation Neutron Source (CSNS). The instrument is planned to provide analytical techniques such as state-of-the-art energy-selective neutron imaging, neutron radiography, tomography, polarized neutron imaging, neutron phase contrast imaging, and combined neutron diffraction. Coupled hydrogen moderator (CHM) will be chosen as its neutron source. A flight path of 40 m from moderator to sample will provide good energy resolution better than ~0.4%. Super mirror neutron guide will be used to transport neutron from moderator to aperture selector. Aperture selector with 5 apertures and a set of slits will be used to adjust the neutron beam for different modalities. The best spatial resolution will be 50 μm. Different types of detectors will be needed including high spatial resolution CCD camera, TOF detector, and scintillator detector. With a main emphasis on advanced materials and engineering studies, the instrument will enable 2D/3D mapping of the microstructure, chemical composition, and crystallographic structure (grain size, stress and strain, phase position, texture, and so on). It will also support a broad range of studies in archaeology, biology, biomedicine, geosciences, building technology, manufacturing processes, forensic, and homeland security applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin, D. L. Jacobson, M. Arif, S. A. Werner, Imaging: Phase radiography with neutrons, Nature. 408(2000) 158-159.

DOI: 10.1038/35041626

Google Scholar

[2] F. Pfeiffer, C. Grünzweig, O. Bunk, G. Frei, E. Lehmann, and C. David, Neutron phase imaging and tomography, Phys. Rev. Lett. 96(2006) 215505(4pp).

DOI: 10.1103/physrevlett.97.069905

Google Scholar

[3] M. Dawson, I. Manke, N. Kardjilov, A. Hilger, M. Strobl, J. Banhart, Imaging with polarized neutrons, New Journal of Physics. 11(2009) 043013(19pp).

DOI: 10.1088/1367-2630/11/4/043013

Google Scholar

[4] W. Kockelmann, G. Frei, E.H. Lehmann, P. Vontobel, J.R. Santisteban, Energy-selective neutron transmission imaging at a pulsed source, Nuclear Instruments and Methods in Physics Research A. 578(2007) 421-434.

DOI: 10.1016/j.nima.2007.05.207

Google Scholar

[5] C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kühne, J. Kohlbrecher, R. Schäfer, P. Lejcek, H. M. R. Rønnow, and F. Pfeiffer, Neutron decoherence imaging for visualizing bulk magnetic domain structures, Phys. Rev. Lett. 101(2008).

DOI: 10.1103/physrevlett.101.025504

Google Scholar

[6] N. Kardjilov, I. Manke, M. Strobl, A. Hilger, W. Treimer, M. Meissner, T. Krist, J. Banhart, Three-dimensional imaging of magnetic fields with polarized neutrons, Nature Physics. 4(2008) 399–403.

DOI: 10.1038/nphys912

Google Scholar

[7] I. Manke, N. Kardjilov, R. Schäfer, Hilger, M. Strobl, M. Dawson, Grünzweig, G. Behr, M. Hentschel, C. David, A. Kupsch, A. Lange, J. Banhart, Three-dimensional imaging of magnetic domains, Nature Communications. 1(2010), 125(6pp).

DOI: 10.1038/ncomms1125

Google Scholar

[8] R. Woracek, D. Penumadu, N. Kardjilov, A. Hilger, M. Boin, J. Banhart, I. Manke, 3D mapping of crystallographic phase distribution using energy-selective neutron tomography, Adv. Mater. 26(2014) 4069-4073.

DOI: 10.1002/adma.201400192

Google Scholar

[9] H. Sato, O. Takada, K. Iwase, T. Kamiyama, Y. Kiyanagi, Imaging of a spatial distribution of preferred orientation of crystallites by pulsed neutron Bragg edge transmission, Journal of Physics: Conference Series. 251(2010) 012070(4pp).

DOI: 10.1088/1742-6596/251/1/012070

Google Scholar

[10] H. Sato, T. Shinohara, R. Kiyanagi, K. Aizawa, M. Ooi, M. Harada, K. Oikawa, F. Maekawa, K. Iwase, T. Kamiyama, Y. Kiyanagi, Upgrade of Bragg edge analysis techniques of the RITS code for crystalline structural information imaging, Physics Procedia. 43(2013).

DOI: 10.1016/j.phpro.2013.03.022

Google Scholar

[11] Y. Kiyanagi, T. Kamiyama, H. Sato, T. Shinohara, T. Kai, K. Aizawa, M. Arai, M. Harada, K. Sakai, K. Oikawa, M. Ohi, F. Maekawa, T. Sakai, M. Matsubayashi, M. Segawa, M. Kureta, Design study of the imaging beamline at J-PARC MLF, ERNIS, Nuclear Instruments and Methods in Physics Research A. 651(2011).

DOI: 10.1016/j.nima.2011.02.075

Google Scholar

[12] W. Kockelmann, S.Y. Zhang, J.F. Kelleher, J.B. Nightingale, G. Burca, J.A. James, IMAT-a new imaging and diffraction instrument at ISIS, Physics Procedia. 43(2013) 100-110.

DOI: 10.1016/j.phpro.2013.03.013

Google Scholar

[13] Information on http: /neutrons. ornl. gov.

Google Scholar

[14] Information on http: /europeanspallationsource. se.

Google Scholar

[15] N. Kardjilov, I. Manke, A. Hilger, M. Strobl, J. Banhart, Neutron imaging in materials science, Materials Today. 14(2011) 248-256.

DOI: 10.1016/s1369-7021(11)70139-0

Google Scholar