[2]
V.A. Peters, B. Gault, F.D. Geuser, A. Deschamps, J.M. Cairney, Microstructural evolution during ageing of Al-Cu-Li-x alloys, Acta Mater. 66 (2014) 199-208.
DOI: 10.1016/j.actamat.2013.12.001
Google Scholar
[3]
A.K. Shukla, W.A. Baeslack lll, Study of microstructural evolution in friction-stir welded thin-sheet Al-Cu-Li alloy using transmission-electron microscopy, Script Mater. 56 (2007) 513-516.
DOI: 10.1016/j.scriptamat.2006.11.028
Google Scholar
[4]
M.R. Rokni, A. Zarei-Hanzaki, Ali A. Roostaei, A. Abolhasani, Constitutive base analysis of a 7075 aluminum alloy during hot compression testing, Mater Design. 32 (2011) 4599-4960.
DOI: 10.1016/j.matdes.2011.05.040
Google Scholar
[5]
Y.C. Lin, Q.F. Li, Y.C. Xia, L.T. Li, A phenomenological constitutive model for high temperature flow stress prediction of Al-Cu-Mg alloy, Mater. Sci. Eng. A. 534 (2012) 654-662.
DOI: 10.1016/j.msea.2011.12.023
Google Scholar
[6]
M. Zhou, Y.C. Lin, J. Deng, Y.Q. Jiang, Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy, Mater Design, 59 (2014) 141-150.
DOI: 10.1016/j.matdes.2014.02.052
Google Scholar
[7]
B. Li, Q.L. Pan, Z. M Yin, Microstructural evolution and constitutive relationship of Al-Zn-Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models, J Alloy Compd. 584 (2014).
DOI: 10.1016/j.jallcom.2013.09.036
Google Scholar
[8]
Y.C. Lin, Y.C. Xia, X.M. Chen, M.S. Chen, Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate, Comp Mater Sci. 50 (2010) 227-233.
DOI: 10.1016/j.commatsci.2010.08.003
Google Scholar
[9]
P. Changizian, A. Zarei-Hanzaki, Ali A. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects, Mater Design. 39 (2012) 384-389.
DOI: 10.1016/j.matdes.2012.02.049
Google Scholar
F.A. Slooff, J. Zhou, J. Duszczyk, L. Katgerman, Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1, Scripta Mater. 57 (2007) 759-762.
DOI: 10.1016/j.scriptamat.2007.06.023
Google Scholar
[1]
X. P Liang, Y. Liu, H. Z Li, C.X. Zhou, G.F. Xu, Constitutive relationship for high temperature deformation of powder metallurgy Ti-47Al-2Cr-2Nb-0. 2W alloy, Mater Design. 37 (2012) 40-47.
DOI: 10.1016/j.matdes.2011.12.019
Google Scholar
[2]
J.B. LI, Y. LIU, Y. WANG, B LIU, X.P. LIANG, Constitutive equation and processing map for hot compressed as-cast Ti-43Al-4Nb-1. 4W-0. 6B alloy, Trans. Nonferrous Met. Soc. China. 23 (2013) 3383 -3391.
DOI: 10.1016/s1003-6326(13)62878-2
Google Scholar
[3]
D. Samantaray, S. Mandal, A.K. Bhaduri, Constitutive analysis to predict high -temperature flow stress in modified 9Cr-1Mo (P91) steel, Mater Design. 31(2010) 981-984.
DOI: 10.1016/j.matdes.2009.08.012
Google Scholar
[4]
H.Y. Li, D.D. Wei, J.D. Hu, Y. H Li, S. L Chen, Constitutive modeling for hot deformation behavior of T24 ferritic steel, Comp Mater Sci. 53 (2012) 425-430.
DOI: 10.1016/j.commatsci.2011.08.031
Google Scholar
[5]
Y. Han, G. J Qiao, Y. Sun, D. Zou, Modeling the constitutive relationship of Cr20Ni25Mo4Cu superaustenitic stainless steel during elevated temperature, Mater. Sci. Eng. A. 539 (2012) 61-67.
DOI: 10.1016/j.msea.2012.01.036
Google Scholar
[6]
F. ZHANG, J. SHEN, X.D. YAN, J. L SUN, X. L SUN, Y. YANG, Y. LIU, High-temperature flow behavior modeling of 2099 alloy considering strain effects, Trans. Nonferrous Met. Soc. China, 24 (2014) 798-805.
DOI: 10.1016/s1003-6326(14)63128-9
Google Scholar
[7]
B. Roebuck B, J.D. Lord, M. Brooks, M.S. Loveday, C.M. Sellars, R.W. Ewans, Measurement of flow stress in hot axisymmetric compression tests, Mater High Temp. 23(2006) 59-83.
DOI: 10.1179/mht.2006.005
Google Scholar
[8]
F. Zhang, J.L. Sun, J. Shen, X.D. Yan, J. Chen, Flow behavior and processing maps of 2099 alloy, Mater. Sci. Eng. A. 613 (2014) 141-147.
DOI: 10.1016/j.msea.2014.06.085
Google Scholar
[9]
A. Momeni, K. Dehghani, Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps, Mater. Sci. Eng. A. 528(2011) 1448-1454.
DOI: 10.1016/j.msea.2010.12.074
Google Scholar
[20]
C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel[J]. J Appl phys. 14 (1969) 22-28.
Google Scholar