Ultrafast Electron Cascades in X-Rays Detector

Article Preview

Abstract:

A new detection method based on the ultrafast refractive index change of semiconductor was used for X-rays detection. Since temporal and spatial resolutions are important parameters of the ultrafast X-rays detector, the electron cascades in gallium arsenide and cadmium selenide were studied using Monte Carlo method. According to the calculations, the energy deposition time and scale are similar in gallium arsenide and cadmium selenide at low energy region, but different at high energy region. Electron cascades don’t have much impact on getting picosecond time resolution and high spatial resolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-229

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P. Vernon, M.E. Lowry, K. L Bake. X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection. Review of Scientific Instruments, 83 (2012) 10D307.

DOI: 10.1063/1.4729677

Google Scholar

[2] C.H. Sarantos, J. E Heebner. Solid-state ultrafast all-optical streak camera enabling high-dynamic-range picosecond recording. Optics letters, 35(2010) 1389-1391.

DOI: 10.1364/ol.35.001389

Google Scholar

[3] M.E. Lowry, C.V. Bennett, S.P. Vernon. X-ray detection by direct modulation of an optical probe beam—Radsensor: Progress on development for imaging applications. Review of scientific instruments, 75 (2004) 3995-3997.

DOI: 10.1063/1.1790055

Google Scholar

[4] M.E. Lowry, C.V. Bennett, S.P. Vernon. RadSensor: x-ray detection by direct modulation of an optical probe beam/Optical Science and Technology, SPIE's 48th Annual Meeting. International Society for Optics and Photonics, 2004 193-204.

Google Scholar

[5] K.L. Baker, R.E. Stewart, P.T. Steele. Ultrafast semiconductor x-ray detector. Applied Physics Letters, 101(2012) 031107.

Google Scholar

[6] K.L. Baker, R.E. Stewart, P.T. Steele. Solid-state framing camera with multiple time frames. Applied Physics Letters, 103(2013) 151111.

DOI: 10.1063/1.4824192

Google Scholar

[7] B. Ziaja, R.A. London, J. Hajdu. Unified model of secondary electron cascades in diamond. Journal of applied physics, 97(2005) 064905.

DOI: 10.1063/1.1853494

Google Scholar

[8] N. Medvedev, B. Ziaja, M. Cammarata. Electron Kinetics in Femtosecond X‐Ray Irradiated SiO2. Contributions to Plasma Physics, 53(2013) 347-354.

DOI: 10.1002/ctpp.201200095

Google Scholar

[9] E.J. McGuire. Atomic L-Shell Coster-Kronig, Auger, and radiative rates and flourescence yields for Na-Th. Physical Review A, 3(1971) 587.

DOI: 10.1103/physreva.3.587

Google Scholar

[10] R.A. London, M.E. Lowry, S.P. Vernon. Electron cascades in sensors for optical detection of ionizing radiation. Journal of Applied Physics, 114(2013) 154510.

DOI: 10.1063/1.4825042

Google Scholar

[11] B.R. Bennett, Soref R A, del Alamo J. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. Quantum Electronics, IEEE Journal of Quantum Electronics, 26(1990) 113-122.

DOI: 10.1109/3.44924

Google Scholar

[12] T.M. Shih, C.H. Sarantos, S.M. Haynes. Chipscale, single-shot gated ultrafast optical recorder. Optics express, 20(2012) 414-425.

DOI: 10.1364/oe.20.000414

Google Scholar