Thermodynamic Re-Assessment of the Mn-La Binary System

Article Preview

Abstract:

In this work, eleven Mn-La alloys were investigated experimentally by means of thermal analysis. The temperatures of the invariant reactions in the Mn-La binary system were determined. To confirm whether the liquid miscibility gap exists in the Mn-La system, one key alloy (Mn72La28) was prepared and then checked by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Microstructure observation and composition analysis indicated the nonexistence of the liquid miscibility gap. Based on the experimental results obtained in the present work and the critical review of the available experimental data in the published literature, a set of self-consistent thermodynamic parameters for the Mn-La system was obtained using the CALPHAD method by thermodynamic optimization of the selected experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Wang, S.J. Campbell, A.J. Studer, M. Avdeev, R. Zeng S.X. Dou, J. Phys.: Condens. Mater. 21 (2009) 124217.

Google Scholar

[2] P. Kumar, K.G. Suresh, A.K. Nigam, A. Magnus, A.A. Coelho, S. Gama, Phys. Rev. B 77 (2008) 224427.

Google Scholar

[3] B. Emre, I. Dincer, Y. Elerman, S. Aksoy, Solid State Sciences 22 (2013) 1-7.

Google Scholar

[4] N.V. Mushnikov, Physics Uspekhi 55 (2012) 421-425.

Google Scholar

[5] S. Majumdar, R. Mallik, E.V. Sampathkumaran, P.L. Paulose, Physica B 259-261 (1999) 842-844.

DOI: 10.1016/s0921-4526(98)01131-4

Google Scholar

[6] L. Rolla, A. Iandelli, Ber. Deut. Chem. Ges. 75 (1942) 2091-(2095).

Google Scholar

[7] K.A. Gschneidner, Jr., Rare Earth Alloys, Van Nostrand, NewYork, 1961, 215-217.

Google Scholar

[8] P.I. Kripyakevich, D.P. Frankevich, Y.V. Voroshilov, Poroshk. Metall. 11 (1965) 55-61.

Google Scholar

[9] F.E. Wang, J.R. Holden, Trans. Metall. Soc. AIME 233 (1965) 731-736.

Google Scholar

[10] H.R. Kirchmayer, Z. Kirstallogr. 124 (1967) 152-160.

Google Scholar

[11] A. Palenzona, S. Ciraflici, Bull. Alloy Phase Diagrams 11 (1990) 491-492.

Google Scholar

[12] J. Kim, I.H. Jung, J. Alloys Compd. 525 (2012) 191-201.

Google Scholar

[13] C.Y. Tang, Y. Du, H.H. Xu, S.M. Hao, L.J. Zhang, J. Min. Metall. B 43 (2007) 21-28.

Google Scholar

[14] C.Y. Tang, Y. Du, L.J. Zhang, H.H. Xu, Z. Zhu, J. Alloy Compd. 437 (2007) 102-106.

Google Scholar

[15] C.P. Wang, Z. Lin, X.J. Liu, J. Alloys Compd. 469 (2009) 123-128.

Google Scholar

[16] H. Okamoto, J. Phase Equilib. 12 (1991) 148-168.

Google Scholar

[17] Y. Wang, B. Hu, S. Liu, Y. Du, J. Min. Metall. B 48 (2012) 391-394.

Google Scholar

[18] I.V. Nikolaenko, V.V. Nosova, Rasplavy 1 (1993) 76-79.

Google Scholar

[19] A.T. Dinsdale, CALPHAD 15 (1991) 317-425.

Google Scholar

[20] M.H.F. Sluiter, CALPHAD 30 (2006) 357-366.

Google Scholar

[21] B. Sundman, B. Jansson, J.O. Andersson, CALPHAD 9 (1985) 153-190.

Google Scholar

[22] T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary Alloy Phase Diagrams, ASM International, (1986).

Google Scholar

[23] H.W. King, Bull. Alloy Phase Diagrams 2 (1981) 401-4044.

Google Scholar