Thermodynamic Calculations of the Rare Earth Permanent Magnets: Fe-RE Binary Systems

Article Preview

Abstract:

As the key sub-binary systems in the rare-earth (RE) permanent magnetic materials with excellent magnetic properties (e.g. Nd-Fe-B, Sm-Fe-N magnets), the Fe-RE binary systems were investigated widely due to the industrial applications of permanent magnets. In this work, the experimental data of phase equilibria and thermodynamic properties of the Fe-RE binary systems (RE=La, Ce, Pr, Nd) in the published literature are reviewed firstly. Based on available phase equilibria data and thermodynamic data, the Fe-RE binary systems are assessed thermodynamically using the CALPHAD method. As a result, further experimental information and thermodynamic calculations will be both required in order to develop thermodynamic database of the RE-Fe-B ternary systems, which is very useful to study the relations between alloy composition, microstructure and magnetic properties of novel Nd-Fe-B-based permanent magnets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Poudyal, J.P. Liu, J. Phys. D: Appl. Phys. 46 (2013) 043001.

Google Scholar

[2] S. Guo, Y.H. Liu, B.C. Chen, C.J. Yan, R.J. Chen, D. Lee, A. Yan, J. Appl. Phys. 111 (2012) 07A740.

Google Scholar

[3] O. Gutfleisch, M. A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821-842.

Google Scholar

[4] Z.B. Li, B.G. Shen, M. Zhang, F.X. Hu, J.R. Sun, J. Alloys Compd. 628 (2015) 325.

Google Scholar

[5] A. Dinsdale, CALPHAD. 15 (1991) 317-327.

Google Scholar

[6] E. Povoden-Karadeniz, A.N. Grundy, M. Chen, T. Ivaa, L.J. Gauckler, J. Phase Equilib. Diffus. 30 (2009) 351-366.

DOI: 10.1007/s11669-009-9501-6

Google Scholar

[7] F.H. Spedding, A.H. Daane, The Rare Earths, John Wiley & Sons, New York, (1961).

Google Scholar

[8] J. Richerd, Mem. Sci. Rev. Metall. 59 (1962) 539-548.

Google Scholar

[9] V.V. Berezutskii, N.I. Usenko, M.I. Ivanov, Powder Metall. Met. Ceram. 45 (2006) 266-271.

DOI: 10.1007/s11106-006-0074-1

Google Scholar

[10] Y.O. Esin, A.F. Ermakov, M.G. Valishev, G.M. Ryss, P.V. Geld, E.S. Levin, Zh. Fiz. Khim. 55 (1981) 1665-1669.

Google Scholar

[11] Y.C. Chuang, C.H. Wu, Z.B. Shao, J. Less-Comm. Met. 136 (1987) 147-153.

Google Scholar

[12] X. Su, J. -C. Tedenac, CALPHAD 30 (2006) 455-460.

Google Scholar

[13] Y.O. Esin, A.F. Ermakov, M.G. Valishev, G.M. Ryss, P.V. Geld, E.S. Levin, Zh. Fiz. Khim. 55 (1981) 2168.

Google Scholar

[14] B.P. Burylev, L.P. Moisov, V.U.Z. Lzvest, Chern. Met. 8 (1988) 1.

Google Scholar

[15] W. Zhang, C. Li, X. Su, J. Phase Equilib. Diffus. 20 (1999) 158-162.

Google Scholar

[16] G.J. Zhou, D. C. Zeng, Materials Science Forum 654 (2010) 2442-2445.

Google Scholar

[17] S. Bar, H. -J. Schaller, Z. Metallkd. 86 (1995) 388-394.

Google Scholar

[18] J.H. Tian, Y.Y. Huang, J.K. Liang, Sci. Sin. Ser. A 6 (1987) 607-619.

Google Scholar

[19] A.E. Ray, AFML-TR-69-239, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1969, 13.

Google Scholar

[20] S.V. Meschel, P. Nash, Q.N. Gao, J.C. Wang, Y. Du, J. Alloys Compd. 554 (2013) 232-239.

Google Scholar

[21] D. Gozzi, M. Iervolino, A. Latini, J. Chem. Eng. Data 52 (2007) 2350-2358.

Google Scholar

[22] M. Ivanov, V. Berezutski, N. Usenko, N. Kotova, Int. J. Mater. Res. 103 (2012) 1-9.

Google Scholar

[23] K. Hennmann, H. L. Lukas, H. -J. Schaller, Z. Metallkd, 84 (1993) 668-674.

Google Scholar

[24] F.J.G. Landgraf, G.S. Schneider, V.V. -Boas, F.P. Missell, J. Less-Comm. Met. 163 (1990) 209-218.

Google Scholar

[25] G.C. Che, J. Liang, X. Wang, Sci. Sin. Ser. A 29 (1986) 1172-1185.

Google Scholar

[26] B. Hallemans, P. Wollants, J. R. Roos, J. Phase Equilib. Diffus. 16 (1995) 137-149.

Google Scholar

[27] M. -A. V. Ende, I. -H. Jung, J. Alloys Compd. 548 (2013) 133-154.

Google Scholar