Plastic Deformation and Recrystallization of a Ni-Based Single Crystal Superalloy

Article Preview

Abstract:

Plastic deformation and recrystallization of a Ni-based single crystal superalloy were experimentally investigated. Compression and Brinell Indentation were utilized to cause plastic deformation, and thereafter some deformed samples received heat treatment. Surface topography around the indent confirms the anisotropic plasticity of single crystal superalloys. The influential distance below the indent is much larger than that on the indent surface. Microstructural observation by Electron Back-scatter Diffraction (EBSD) shows that it is easier for nucleation and grain boundary migration in the dendritic arms. In addition, the recovery has almost no effect on preventing recrystallization for deformed samples with small plastic strains (around 5%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-55

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J PROPUL POWER, 22(2006) 361-371.

DOI: 10.2514/1.18239

Google Scholar

[2] Q. Xu, H. Zhang, X. Qi, B. Liu, Multiscale Modeling and Simulation of Directional Solidification Process of Turbine Blade Casting with MCA Method, Metallurgical and Materials Transactions B, (2013).

DOI: 10.1007/s11663-013-9909-6

Google Scholar

[3] D. Ma, A. Bührig-Polaczek, The Geometrical Effect on Freckle Formation in the Directionally Solidified Superalloy CMSX-4, METALL MATER TRANS A, 45(2014) 1435-1444.

DOI: 10.1007/s11661-013-2088-x

Google Scholar

[4] Z. Li, J. Xiong, Q. Xu, J. Li, B. Liu, Deformation and recrystallization of single crystal nickel-based superalloys during investment casting, J MATER PROCESS TECH, 217(2015) 1-12.

DOI: 10.1016/j.jmatprotec.2014.10.019

Google Scholar

[5] Z. Li, Q. Xu, B. Liu, Microstructure simulation on recrystallization of an as-cast nickel based single crystal superalloy, COMP MATER SCI, 107(2015) 122-133.

DOI: 10.1016/j.commatsci.2015.05.020

Google Scholar

[6] Z. Li, Q. Xu, B. Liu, Simulation and Experimental Study of Recrystallization Kinetics of Nickel Based Single Crystal Superalloys, Materials Today: Proceedings, 2(2015) S440-S452.

DOI: 10.1016/j.matpr.2015.05.060

Google Scholar

[7] Z. Li, Q. Xu, J. Xiong, J. Li, B. Liu, Simulation and experiments on plasticity and recrystallisation in SX superalloys by investment casting, MATER RES INNOV, 18(2014) S4-S331.

DOI: 10.1179/1432891714z.000000000698

Google Scholar

[8] G. Xie, L. Wang, J. Zhang, L.H. Lou, Orientational dependence of recrystallization in an Ni-base single-crystal superalloy, SCRIPTA MATER, 66(2012) 378-381.

DOI: 10.1016/j.scriptamat.2011.11.037

Google Scholar

[9] G. Xie, J. Zhang, L.H. Lou, Effect of heat treatment atmosphere on surface recrystallization of a directionally solidified Ni-base superalloy, SCRIPTA MATER, 59(2008) 858-861.

DOI: 10.1016/j.scriptamat.2008.06.032

Google Scholar

[10] J. Meng, T. Jin, X.F. Sun, Z.Q. Hu, Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy, MAT SCI ENG A-STRUCT, 527(2010) 6119-6122.

DOI: 10.1016/j.msea.2010.04.071

Google Scholar

[11] G. Xie, L. Wang, J. Zhang, L.H. Lou, Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy, METALL MATER TRANS A, 39A(2008) 206-210.

DOI: 10.1007/s11661-007-9387-z

Google Scholar

[12] B. Zhang, C.K. Liu, Y.H. He, C.H. Tao, X. Lu, Recrystallization of SRR99 single-crystal superalloy: Kinetics and microstructural evolution, RARE METALS, 29(2010) 312-316.

DOI: 10.1007/s12598-010-0055-x

Google Scholar

[13] L. Zhuo, M. Huang, F. Wang, J. Xiong, J. Li, J. Zhu, Kinetics of cellular discontinuous precipitation in a Re-containing single crystal superalloy, MATER LETT, 139(2015) 232-236.

DOI: 10.1016/j.matlet.2014.10.075

Google Scholar

[14] L. Zhuo, M. Huang, F. Wang, J. Xiong, J. Li, J. Zhu, The effect of elemental vaporization and redistribution during sub-solvus recrystallization of a single crystal superalloy, MATER LETT, 143(2015) 305-308.

DOI: 10.1016/j.matlet.2014.12.122

Google Scholar

[15] L. Wang, F. Pyczak, J. Zhang, L.H. Lou, R.F. Singer, Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4, MAT SCI ENG A-STRUCT, 532(2012) 487-492.

DOI: 10.1016/j.msea.2011.11.015

Google Scholar

[16] L. Wang, G. Xie, L.H. Lou, Effect of carbon content on the recrystallization of a single crystal nickel-based superalloy, MATER LETT, 109(2013) 154-157.

DOI: 10.1016/j.matlet.2013.07.073

Google Scholar

[17] J.C. Xiong, J.R. Li, S.Z. Liu, J.Q. Zhao, M. Han, Effects of carburization on recrystallization behavior of a single crystal superalloy, MATER CHARACT, 61(2010) 749-755.

DOI: 10.1016/j.matchar.2010.04.007

Google Scholar

[18] C. Zambaldi, F. Roters, D. Raabe, U. Glatzel, Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy, MAT SCI ENG A-STRUCT, 454(2007) 433-440.

DOI: 10.1016/j.msea.2006.11.068

Google Scholar

[19] R.D. Doherty, Role of interfaces in kinetics of internal shape changes, Metal Science, 16(1982) 1-14.

Google Scholar

[20] R.M. Kearsey, J.C. Beddoes, P. Jones, P. Au, Compositional design considerations for microsegregation in single crystal superalloy systems, INTERMETALLICS, 12(2004) 903-910.

DOI: 10.1016/j.intermet.2004.02.041

Google Scholar

[21] S.D. BOND, J.W. MARTIN, Surface Recrystallization in a Single-Crystal Nickel-Based Superalloy, J Mater Sci, 19(1984) 3867-3872.

DOI: 10.1007/bf00980749

Google Scholar

[22] L.I. Zhonglin, F. Xiangyu, X.U. Qingyan, L. Baicheng, Influence of deformation temperature on recrystallization in a NI-based single crystal superalloy, MATER LETT.

Google Scholar