[1]
Liu Fang, Yu Fuxiao, Zhao Dazhi, Zuo Liang. Microstructure and mechanical properties of an Al–12. 7Si–0. 7Mg alloy processed by extrusion and heat treatment Mater Sci & Eng A 528 (2011) 3786-3790.
DOI: 10.1016/j.msea.2011.01.041
Google Scholar
[2]
I. Aguilera Luna, H. Manxha Molinar, M.J. Castro Román, J.C. Escobedo Bocardo, M. Herrera Trejo. Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi stage solution heat treatments. Mater Sci & Eng A 561(2013).
DOI: 10.1016/j.msea.2012.10.064
Google Scholar
[3]
E. Sjölander, S. Seifeddine. The heat treatment of Al-Si-Cu-Mg casting alloys. J Mater Process Tech, 210 (2010) 1249-1259.
DOI: 10.1016/j.jmatprotec.2010.03.020
Google Scholar
[4]
E. Sjölander, S. Seifeddine. Artificial ageing of Al-Si-Cu-Mg casting alloys. Mater Sci & Eng A 528 (2011) 7402-7409.
DOI: 10.1016/j.msea.2011.06.036
Google Scholar
[5]
C. Cayron and P.A. Buffat. Transmission Electron Microscopy Study of the b' Phase (Al-Mg-Si Alloys) and QC Phase (Al-Cu-Mg-Si Alloys): Ordering Mechanism and Crystallographic Structure. Acta Materialia 48 (2000) 2639-2653.
DOI: 10.1016/s1359-6454(00)00057-4
Google Scholar
[6]
C. Wolverton. Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Zn-Mg Alloys. Acta Materialia 49 (2001) 3129-3142.
DOI: 10.1016/s1359-6454(01)00229-4
Google Scholar
[7]
G. Wang, Q. Sun, L. Feng, L. Hui, C. Jing. Influence of Cu Content on Aging Behavior of AlSiMgCu Cast Alloys. Mater. Des. 28 (2007) 340-346.
DOI: 10.1016/j.matdes.2005.11.015
Google Scholar
[8]
G. Wang, X. Bian, X. Liu, J. Zhang. Effect of Mg on Age Hardening and Precipitation Behavior of an AlSiCuMg Cast Alloy. J. Mater. Sci. 39 (2004) 2535-2537.
DOI: 10.1023/b:jmsc.0000020022.19854.ac
Google Scholar
[9]
D. G. Eskin. Decomposition of Supersaturated Solid Solutions in Al-Cu-Mg-Si Alloys. J. Mater. Sci. 38 (2003) 279-290.
Google Scholar
[10]
X. Wang, S. Esmaeili, D. J. Lloyd. On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metall. Mater. Trans. A 37 (2006) 2691-2699.
DOI: 10.1007/bf02586103
Google Scholar
[11]
X. Wang, W. J. Poole, S. Esmaeili, D. J. Lloyd, J. D. Embury. Precipitation strengthening of the aluminum alloy AA6111. Metall. Mater. Trans. A 34 (2003) 2913-2924.
DOI: 10.1007/s11661-003-0191-0
Google Scholar
[12]
D.J. Chakrabarti, D.E. Laughlin. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Prog Mater Sci 49 (2004) 389-410.
DOI: 10.1016/s0079-6425(03)00031-8
Google Scholar
[13]
S.J. Andersen, H.W. Zandbergen, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen. The crystal structure of the β' phase in Al–Mg–Si alloys. Acta Mater 55 (1998) 3815-3823.
DOI: 10.1016/j.actamat.2007.02.032
Google Scholar
[14]
Y. Zheng, W. Xiao, S. Ge, W. Zhao, S. Hanada, C. Ma. Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of AleSieCueMg alloys. J Alloys Compd 649 (2015) 291-296.
DOI: 10.1016/j.jallcom.2015.07.090
Google Scholar
[15]
M. Yıldırım, D. Özyürek. Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356. 0 aluminum alloy. Mater Design, 51 (2013) 767-774.
DOI: 10.1016/j.matdes.2012.08.066
Google Scholar
[16]
J.Y. Hwang, R. Banerjee, H.W. Doty, M.J. Kaufman. The effect of Mg on the structure and properties of Type 319 aluminum casting alloys. Acta Mater, 57 (2009) 1308-1317.
DOI: 10.1016/j.actamat.2008.11.021
Google Scholar