Solidification Behavior and Mechanical Properties of Al-Si-Mg Alloy with Ti Addition

Article Preview

Abstract:

The solidification behavior, microstructural evolution and mechanical properties of Al-Si-Mg foundry alloy with different Ti additions were investigated in the present study. The solidification behavior of those A357 alloys was analyzed through thermal analysis. The microstructures were examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the addition of Ti could refine grains of A357 as-cast alloy due to a good restriction on the grain growth, but Ti could not refine secondary dendrite arm spacing (SDAS), thus mechanical properties of the A357 as-cast alloy did not improved significantly. After T6 heat treatment, the microstructure with α-Al dendrites with the Al-Si eutectics at interdendritic space was replaced by a homogeneous α-Al matrix with a nonuniform dispersion of discrete, spheroidizing and coarse silicon particles. Hence, compared with the as-cast alloys, both of the strength and ductility of the T6 treated alloys are significantly improved, and an optimal combination of strength and elongation of the A357 alloy can be achieved by the 0.8 wt.% Ti addition after T6 heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

594-602

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Hatch, A. Association, Aluminum: properties and physical metallurgy, ASM International, (1984).

Google Scholar

[2] Y. Birol, Grain refinement and modification of Al–Si foundry alloys with B and Sr additions, Materials Science and Technology, 30 (2014) 1154-1161.

DOI: 10.1179/1743284713y.0000000392

Google Scholar

[3] G. -l. Liu, N. -c. Si, S. -c. Sun, Q. -f. Wu, Effects of grain refining and modification on mechanical properties and microstructures of Al–7. 5Si–4Cu cast alloy, Transactions of Nonferrous Metals Society of China, 24 (2014) 946-953.

DOI: 10.1016/s1003-6326(14)63147-2

Google Scholar

[4] X.H. Zhang, G.C. Su, C.W. Ju, W.C. Wang, W.L. Yan, Effect of modification treatment on the microstructure and mechanical properties of Al–0. 35%Mg–7. 0%Si cast alloy, Materials & Design, 31 (2010) 4408-4413.

DOI: 10.1016/j.matdes.2010.04.032

Google Scholar

[5] C. Caceres, Q. Wang, Solidification Conditions, Heat Treatment and Tensile Ductility of Al-7Si-0. 4 Mg Casting Alloys (96-153), Transactions of the American Foundrymen's Society, 104 (1996) 1039-1044.

Google Scholar

[6] F. Paray, J. Gruzleski, Microstructure-mechanical property relationships in a 356 alloy. Part I: Microstructure, Cast Metals, 7 (1994) 29-29.

DOI: 10.1080/09534962.1994.11819161

Google Scholar

[7] F. Paray, J. Gruzleski, Microstructure-mechanical property relationships in a 356 alloy. Part II: mechanical properties, Cast Metals, 7 (1994) 153-153.

DOI: 10.1080/09534962.1994.11819174

Google Scholar

[8] K. Kashyap, S. Murali, K. Raman, K. Murthy, Casting and heat treatment variables of Al–7Si–Mg alloy, Materials science and technology, 9 (1993) 189-204.

DOI: 10.1179/mst.1993.9.3.189

Google Scholar

[9] N. Saheb, T. Laoui, A.R. Daud, M. Harun, S. Radiman, R. Yahaya, Influence of Ti addition on wear properties of Al–Si eutectic alloys, Wear, 249 (2001) 656-662.

DOI: 10.1016/s0043-1648(01)00687-1

Google Scholar

[10] M. Zeren, E. Karakulak, Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al–Si alloys, Journal of Alloys and Compounds, 450 (2008) 255-259.

DOI: 10.1016/j.jallcom.2006.10.131

Google Scholar

[11] S. Shivkumar, L. Wang, D. Apelian, Molten metal processing of advanced cast aluminum alloys, JOM, 43 (1991) 26-32.

DOI: 10.1007/bf03220114

Google Scholar

[12] N.L. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Dendrite coherency of Al-Si-Cu alloys, Metallurgical and Materials Transactions A, 32 (2001) 147-155.

DOI: 10.1007/s11661-001-0110-1

Google Scholar

[13] H.J. Choi, Y. Kim, J.H. Shin, D.H. Bae, Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer, Materials Science and Engineering: A, 527 (2010) 1565-1570.

DOI: 10.1016/j.msea.2009.10.035

Google Scholar

[14] S. Hwang, C. Nishimura, P.G. McCormick, Deformation mechanism of nanocrystalline magnesium in compression, Scripta Materialia, 44 (2001) 1507-1511.

DOI: 10.1016/s1359-6462(01)00716-3

Google Scholar

[15] S. Gowri, F.H. Samuel, Effect of alloying elements on the solidification characteristics and microstructure of Al-Si-Cu-Mg-Fe 380 alloy, Metallurgical and Materials Transactions A, 25 (1994) 437-448.

DOI: 10.1007/bf02647989

Google Scholar

[16] A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys, Materials Science and Engineering: A, 413–414 (2005) 243-248.

DOI: 10.1016/j.msea.2005.09.055

Google Scholar

[17] A.A. Canales, J. Talamantes-Silva, D. Gloria, S. Valtierra, R. Colás, Thermal analysis during solidification of cast Al–Si alloys, Thermochimica Acta, 510 (2010) 82-87.

DOI: 10.1016/j.tca.2010.06.026

Google Scholar

[18] ASTM E8. Standard Test Methods for Tension Testing of Metallic Materials; (2004).

Google Scholar

[19] M. Tiryakioğlu, Si particle size and aspect ratio distributions in an Al–7% Si–0. 6% Mg alloy during solution treatment, Materials Science and Engineering: A, 473 (2008) 1-6.

DOI: 10.1016/j.msea.2007.03.044

Google Scholar

[20] K.E. Knipling, Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates, in, NORTHWESTERN UNIVERSITY, (2006).

Google Scholar

[21] W.F. Gale, T.C. Totemeier, Smithells metals reference book, Butterworth-Heinemann, (2003).

Google Scholar

[22] I. Maxwell, A. Hellawell, A simple model for grain refinement during solidification, Acta Metallurgica, 23 (1975) 229-237.

DOI: 10.1016/0001-6160(75)90188-1

Google Scholar