[1]
N. Petkov, In situ real-time TEM reveals growth, transformation and function in one-dimensional nanoscale materials: from a nanotechnology perspective, ISRN Nanotechnology. Article ID 893060 (2013) 1-21.
DOI: 10.1155/2013/893060
Google Scholar
[2]
S. K. Malladi, Q. Xu, M. A. Huis, F. D. Tichelaar, K. J. Batenburg, E. Yücelen, B. Dubiel, A. C. Filemonowicz, H. W. Zandbergen, Real-time atomic scale imaging of nanostructural evolution in aluminum alloys, Nano Lett. 14 (2014) 384-389.
DOI: 10.1021/nl404565j
Google Scholar
[3]
M. Rudneva, B. Gao, F. Prins, Q. Xu, S. J. Zant Herre, H.W. Zandbergen, In situ transmission electron microscopy imaging of electromigration in platinum nanowires, Microsc Microanal. 19 S5 (2013) 43-48.
DOI: 10.1017/s1431927613012300
Google Scholar
[4]
D. V. S. Rao, K. Muraleedharan, C. J. Humphreys(Eds), Microscopy: Science, Technology, Applications and Education. 3(2010)1232-1244.
Google Scholar
[5]
L. A. Giannuzzi, J. L. Drown, S. R. Brown, R. B. Irwin, F. Stevie, Applications of the FIB lift-out technique for TEM specimen preparation, Microsc. Res. Tech. 41(4) (1998) 285-290.
DOI: 10.1002/(sici)1097-0029(19980515)41:4<285::aid-jemt1>3.0.co;2-q
Google Scholar
[6]
L. A. Giannuzzi, F. A. Stevie, A review of focused ion beam milling techniques for TEM specimen preparation, Micron. 30 (1999) 197-204.
DOI: 10.1016/s0968-4328(99)00005-0
Google Scholar
[7]
R. Wirth, Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale, Chemical Geology. 261 (2009) 217-229.
DOI: 10.1016/j.chemgeo.2008.05.019
Google Scholar
[8]
M Schaffer, B Schaffer, Q Ramasse, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy. 114 (2012) 62-71.
DOI: 10.1016/j.ultramic.2012.01.005
Google Scholar
[9]
L. Lechner, J. Biskupek, U. Kaiser, Improved focused ion beam target preparation of (S)TEM specimen-a method for obtaining ultrathin lamellas, Microsc Microanal. 18(2) (2012) 379-384.
DOI: 10.1017/s1431927611012499
Google Scholar
[10]
J. Mayer, L. A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage, MRS Bulletin. 32 (2007) 400-407.
DOI: 10.1557/mrs2007.63
Google Scholar
[11]
P. J. S. Buenconsejo, H. Y. Kim, S. Miyazaki, Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys, Acta Mater. 57 (2009) 2509-2515.
DOI: 10.1016/j.actamat.2009.02.007
Google Scholar
[12]
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature. 432 (2004) 84-87.
DOI: 10.1038/nature03028
Google Scholar
[13]
S. Bals, W. Tirry, R. Geurts, Z. Q. Yang, D. Schryvers, High-quality sample preparation by low KV FIB thinning for analytical TEM measurements, Microsc Microanal. 13 (2007) 80-86.
DOI: 10.1017/s1431927607070018
Google Scholar
[14]
B. Volbert, A. Rummel, K. Schock, & S. Kleindiek, New tools for preparing ultra-thin TEM samples, Microsc Microanal. 18 (Suppl 2) (2012) 644-645.
DOI: 10.1017/s1431927612005077
Google Scholar
[15]
M. Rudneva, E. Veldhoven, S. K. Malladi, D. Maas, H. W. Zandbergen, Novel nanosample preparation with a helium ion microscope, J. Mater. Res. 28(8) (2013)1013-1020.
DOI: 10.1557/jmr.2013.30
Google Scholar