[1]
H.H. Cho, SH. Kang, S.H. Kim, et al. Microstructural evolution in friction stir welding of high-strength linepipe steel. Materials and Design (2012), 34, 258.
DOI: 10.1016/j.matdes.2011.08.010
Google Scholar
[2]
P. Kanjilal, T.K. Pal, S.K. Majumdar. Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal. Journal of Materials Processing Technology (2006), 171(2), 223-231.
DOI: 10.1016/j.jmatprotec.2005.06.083
Google Scholar
[3]
J.E. Ramirez. Characterization of High-Strength Steel Weld Metals: Chemical Composition, Microstructure, and Nonmetallic Inclusions. Welding Journal (2008), 87(3), 65S-75S.
Google Scholar
[4]
M. Matsushita, S. Liu. Hydrogen Control in Steel Weld Metal by Means of Fluoride Additions in Welding Flux. Welding Journal (2000), 79(10), 295S-303S.
Google Scholar
[5]
H. Granjon. Fundamentals of welding metallurgy. Woodhead Publishing Ltd; English ed. (1991).
Google Scholar
[6]
Q.S. Meng, B. Wan, Influence of microstructural appearances of slag on detachability of electrode. Han Jie Xue Bao (1993), 14(3), 202-206.
Google Scholar
[7]
L. Binder, W. Jantscher, F. Hofer, G. Kothleitner, Production and characterisation of electrolytically doped manganese dioxide. Journal of Power Sources (1998), 70(1), 1-7.
DOI: 10.1016/s0378-7753(97)02564-0
Google Scholar
[8]
J.S. Luo, K. Li, X.B. Li, Y.J. Shu, Y.J. Tang, Phase evolution and alloying mechanism of titanium aluminide nanoparticles. Journal of Alloys and Compounds (2014), 615, 333-337.
DOI: 10.1016/j.jallcom.2014.06.102
Google Scholar
[9]
P.G. Tsyrulnikov, S.V. Tsybulya, G. N Kryukova., et al, Phase transformations in the thermoactivated MnOx–Al2O3 catalytic system, Journal of Molecular Catalysis A-Chemical (2002), 79 (1-2), 213-220.
DOI: 10.1016/s1381-1169(01)00327-2
Google Scholar
[10]
K.J.D. Mackenzie, M. Schmucker, M.E. Smith, et al, Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid state MAS NMR IV: Calcium dialuminate, CaAl4O7 and calcium hexaluminate, CaAl12O19. Thermochimica Acta (2000).
DOI: 10.1002/chin.200107010
Google Scholar
[11]
S.K. Manik, S.K. Pradhan, M. Pal, Nanocrystalline CaTiO3 prepared by soft-chemical route. Physica E (2005), 25(4), 421-424.
DOI: 10.1016/j.physe.2004.07.005
Google Scholar
[12]
G.M. Mi, F. Saito, S. Suzuki, Y. Waseda, Formation of CaTiO3 by grinding from mixtures of CaO or Ca(OH)2 with anatase or rutile at room temperature. Powder Technology (1998), 97(2), 178-182.
DOI: 10.1016/s0032-5910(98)00012-6
Google Scholar