[1]
A. Boegel, K. Ohla, H.R. Mueller, United States Patent, U.S. Patent 6, 811, 623B2. (2004).
Google Scholar
[2]
A.V. Bobylev, Microhardness of Cu-Ni-Mn alloy reduced by etching reagents, Met. Sci. Heat Treat. 2 (1960) 43-44.
DOI: 10.1007/bf00655592
Google Scholar
[3]
D. Rondot, J. Mignot, Etude du stade initial de la transformation structurale de l'alliage Cu-Ni-Mn 60, 20, 20, Acta Metall. 26 (1978) 217-222.
DOI: 10.1016/0001-6160(78)90121-9
Google Scholar
[4]
S. Shapiro, D.E. Tyler, R. Lanam, Phenomenology of precipitation in Copper-20 pct Nickel-20 pct Manganese, Metall. Trans. 11 (1974) 2457-2469.
DOI: 10.1007/bf02644029
Google Scholar
[5]
W.H. Sun, H.H. Xu, S.H. Liu, H.L. Chen, L.J. Zhang, B.Y. Huang, Experimental investigation and thermodynamic modeling of the Cu-Mn-Ni system , Calphad, 33 (2009) 642-649.
DOI: 10.1016/j.calphad.2009.07.003
Google Scholar
[6]
A. Lombardi, C. Ravindran, R. Mackay, Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Mater. Sci. Eng. A 633 (2015) 125-135.
DOI: 10.1016/j.msea.2015.02.076
Google Scholar
[7]
Q. Miao, L.X. Hu, X. Wang, E.D. Wang, Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling, J. Alloys Compd. 493 (2010) 87-90.
DOI: 10.1016/j.jallcom.2009.12.049
Google Scholar
[8]
F.J. Gil, J.M. Guilemany, Effect of cobalt addition on grain growth kinetics in Cu-Zn-Al shape memory alloys, Intermetallics 6 (1998) 445-450.
DOI: 10.1016/s0966-9795(97)00090-3
Google Scholar
[9]
M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965) 227-38.
Google Scholar
[10]
N. Saunders, A.P. Miodownlk, The Cu-Sn (Copper-Tin) system, Bulletin of Alloy Phase Diagrams 11 (1990) 278-287.
DOI: 10.1007/bf03029299
Google Scholar
[11]
A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion, Mater. Sci. Eng. A 532 (2012) 139-145.
DOI: 10.1016/j.msea.2011.10.074
Google Scholar
[12]
P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, J. Romanoff, Influence of grain size distribution on the Hall-Petch relationship of welded structural steel, Mater. Sci. Eng. A 592 (2014) 28-39.
DOI: 10.1016/j.msea.2013.10.094
Google Scholar
[13]
A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Modeling the effect of flatter shape of WC crystals on the hardness of WC-Ni cemented carbides, Int. J. Refract. Met. H. 27 (2009) 198-212.
DOI: 10.1016/j.ijrmhm.2008.07.008
Google Scholar
[14]
M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the hall-petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Mater. 44 (1996) 4619-4629.
DOI: 10.1016/1359-6454(96)00105-x
Google Scholar
[15]
R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7 (1962) 45-58.
Google Scholar
[16]
H.B. Huang, F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers, Acta mater. 48 (2000) 3261-3269.
DOI: 10.1016/s1359-6454(00)00128-2
Google Scholar
[17]
M. Hakamada, Y. Nakamoto, H. Matsumoto,H. Iwasaki, Y.Q. Chen, H. Kusuda, M. Mabuchi, Relationship between hardness and grain size in electrodeposited copper films, Mater. Sci. Eng. A 457 (2007) 120-126.
DOI: 10.1016/j.msea.2006.12.101
Google Scholar