Effect of Solution Treatment on Microstructure Evolution and Mechanical Behavior of Cu-20Ni-20Mn Alloy

Article Preview

Abstract:

The influence of solution treatment on microstructure evolution and mechanical behavior of Cu-20Ni-20Mn alloy was investigated by optical microscopy (OM), X-ray diffraction (XRD) and hardness test. The results revealed that both solution temperature and holding time had effect on the grain growth behavior. The grain growth activation energy was determined by grain size of Cu-20Ni-20Mn alloy for different heat treatment temperatures and periods. With increasing temperature of solution treatment, the second phase is gradually dissolved into the Cu-rich matrix, and the lattice parameter of the matrix solution treated at 1173K for 0.5 h was about 3.668 Å. The hardness of the solution-treated alloy was lower than that of hot forging, and the hardness value decreased with the increase of solution temperature, which may be attributed to grain size. The hardening ability, corresponding to the Hall-Petch relationship, decreased linearly with D-1/2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

773-777

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Boegel, K. Ohla, H.R. Mueller, United States Patent, U.S. Patent 6, 811, 623B2. (2004).

Google Scholar

[2] A.V. Bobylev, Microhardness of Cu-Ni-Mn alloy reduced by etching reagents, Met. Sci. Heat Treat. 2 (1960) 43-44.

DOI: 10.1007/bf00655592

Google Scholar

[3] D. Rondot, J. Mignot, Etude du stade initial de la transformation structurale de l'alliage Cu-Ni-Mn 60, 20, 20, Acta Metall. 26 (1978) 217-222.

DOI: 10.1016/0001-6160(78)90121-9

Google Scholar

[4] S. Shapiro, D.E. Tyler, R. Lanam, Phenomenology of precipitation in Copper-20 pct Nickel-20 pct Manganese, Metall. Trans. 11 (1974) 2457-2469.

DOI: 10.1007/bf02644029

Google Scholar

[5] W.H. Sun, H.H. Xu, S.H. Liu, H.L. Chen, L.J. Zhang, B.Y. Huang, Experimental investigation and thermodynamic modeling of the Cu-Mn-Ni system , Calphad, 33 (2009) 642-649.

DOI: 10.1016/j.calphad.2009.07.003

Google Scholar

[6] A. Lombardi, C. Ravindran, R. Mackay, Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Mater. Sci. Eng. A 633 (2015) 125-135.

DOI: 10.1016/j.msea.2015.02.076

Google Scholar

[7] Q. Miao, L.X. Hu, X. Wang, E.D. Wang, Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling, J. Alloys Compd. 493 (2010) 87-90.

DOI: 10.1016/j.jallcom.2009.12.049

Google Scholar

[8] F.J. Gil, J.M. Guilemany, Effect of cobalt addition on grain growth kinetics in Cu-Zn-Al shape memory alloys, Intermetallics 6 (1998) 445-450.

DOI: 10.1016/s0966-9795(97)00090-3

Google Scholar

[9] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965) 227-38.

Google Scholar

[10] N. Saunders, A.P. Miodownlk, The Cu-Sn (Copper-Tin) system, Bulletin of Alloy Phase Diagrams 11 (1990) 278-287.

DOI: 10.1007/bf03029299

Google Scholar

[11] A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion, Mater. Sci. Eng. A 532 (2012) 139-145.

DOI: 10.1016/j.msea.2011.10.074

Google Scholar

[12] P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, J. Romanoff, Influence of grain size distribution on the Hall-Petch relationship of welded structural steel, Mater. Sci. Eng. A 592 (2014) 28-39.

DOI: 10.1016/j.msea.2013.10.094

Google Scholar

[13] A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Modeling the effect of flatter shape of WC crystals on the hardness of WC-Ni cemented carbides, Int. J. Refract. Met. H. 27 (2009) 198-212.

DOI: 10.1016/j.ijrmhm.2008.07.008

Google Scholar

[14] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the hall-petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Mater. 44 (1996) 4619-4629.

DOI: 10.1016/1359-6454(96)00105-x

Google Scholar

[15] R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7 (1962) 45-58.

Google Scholar

[16] H.B. Huang, F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers, Acta mater. 48 (2000) 3261-3269.

DOI: 10.1016/s1359-6454(00)00128-2

Google Scholar

[17] M. Hakamada, Y. Nakamoto, H. Matsumoto,H. Iwasaki, Y.Q. Chen, H. Kusuda, M. Mabuchi, Relationship between hardness and grain size in electrodeposited copper films, Mater. Sci. Eng. A 457 (2007) 120-126.

DOI: 10.1016/j.msea.2006.12.101

Google Scholar