Effect of Cold Rolling and Heat Treatment on Properties and Microstructure of Cu-24wt%Ag Alloys

Article Preview

Abstract:

Sheets of Cu-24wt.%Ag alloy were prepared through the process of forging, cold rolling and heat treatment to reveal the evolution of microstructures, mechanical properties and electrical conductivity. The experimental results showed that nanomultilayered structure of Cu and Ag phases arranged alternatively was obtained, with numerous nanoscale Ag precipitate-fibers embedded in Cu matrix. The lamellas in longitudinal section became curved gradually and shear bands appeared when the deformation exceeded 90.79%. With the increase of rolling strain, the average layer thickness and spacing decreased progressively and reached to less than 200 nm as the strain surpassed 96%, resulting in rapid enhancement of the hardness. The heat treatment at 250°C markedly improved electrical conductivity of the alloy, with little decline of the hardness. The anisotropy of the alloy reduced with rising temperature. Local spheroidization occurred when the alloy was heat treated at 300°C. Hardening of this Cu-Ag alloy is predominated by Cu/Ag interface in strain stage of 80%~99%, leaning mainly upon layer thickness and spacing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

755-761

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Sakai, K. Inoue, T. Asano, H. Maeda, Development of High-strength High-conductive Copper-Silver alloys, J. Japan Inst. Metals. 55 (1991) 1382-1391.

DOI: 10.2320/jinstmet1952.55.12_1382

Google Scholar

[2] Y. Sakai, H.J. Schneider-Muntau, Ultra-high strength, high conductivity Cu-Ag alloy wires, Acta Mater. 45 (1997) 1017-1023.

DOI: 10.1016/s1359-6454(96)00248-0

Google Scholar

[3] Wood J T, Embury J D, Ashby M, An approach to materials processing and selection for high-field magnet design, Acta Mater. 45 (1997) 1099-1104.

DOI: 10.1016/s1359-6454(96)00220-0

Google Scholar

[4] Y. Sakai, K. Inoue, H. Maeda, New high-strength, high-conductivity Cu-Ag alloy sheets, Acta Mater. 43 (1995) 1517-1522.

DOI: 10.1016/0956-7151(94)00376-s

Google Scholar

[5] K. Han, J.D. Embury, J.R. Sims, et al, The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors, Mater. Sci. Eng. A 267 (1999) 99-114.

DOI: 10.1016/s0921-5093(99)00025-8

Google Scholar

[6] J.B. Liu, L. Meng, Y.W. Zeng, Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content, Mater. Sci. Eng. A 435-436 (2006) 237-244.

DOI: 10.1016/j.msea.2006.07.125

Google Scholar

[7] K. Han, A.A. Vasquez, Y. Xin, P. N. Kalu, Microstructure and tensile properties of nanostructured Cu-25wt%Ag, Acta Mater. 51 (2003) 767-780.

DOI: 10.1016/s1359-6454(02)00468-8

Google Scholar

[8] L. Zhang, L. Meng, J.B. Liu, Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6 wt. %Ag microcomposite, Scripta Mater. 52 (2005) 587-592.

DOI: 10.1016/j.scriptamat.2004.11.035

Google Scholar

[9] G. Frommeyer, G. Wassermann, Microstructure and anomalous mechanical properties of in situ-produced silver-copper composite wires, Acta Metall. 23 (1975) 1353-1360.

DOI: 10.1016/0001-6160(75)90144-3

Google Scholar

[10] W.B. Lee, E.H. Yoon, S.B. Jung, Effects of fine fiber structures on the mechanical and electrical properties of cold rolled Cu-Ag sheet, J. Mater. Sci. Lett. 22 (2003) 1751-1754.

DOI: 10.1023/b:jmsl.0000005412.91868.71

Google Scholar

[11] J.B. Liu, L. Meng, The characteristics of Cu-12wt. %Ag filamentary microcomposite in different isothermal process, Mater. Sci. Eng. A 418 (2006) 320-325.

DOI: 10.1016/j.msea.2005.12.001

Google Scholar

[12] A. Benghalem, D.G. Morris, Microstructure and strength of wire-drawn Cu-Ag filamentary composites, Acta Mater. 45 (1997) 397-406.

DOI: 10.1016/s1359-6454(96)00152-8

Google Scholar

[13] Y.T. Ning, X.H. Zhang, G.Y. Qin, J. Zhang, Influence of preparation technology on structure and properties of Cu-Ag alloy in situ composites, Chinese Journal of Rare Metals. 29 (2005) 442-447.

Google Scholar

[14] Y.Z. Tian, S.D. Wu, Z.F. Zhang, Strain hardening behavior of a two-phase Cu-Ag alloy processed by high-pressure torsion, Scripta Mater. 65 (2011) 477-480.

DOI: 10.1016/j.scriptamat.2011.06.004

Google Scholar

[15] S. I. Hong, M. A. Hill, Microstructural stability and mechanical response of Cu-Ag microcomposite wires, Acta Mater. 46 (1998) 4111-4122.

DOI: 10.1016/s1359-6454(98)00106-2

Google Scholar

[16] S. I. Hong, M. A. Hill, Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites, Mater. Sci. Eng. A 264 (1999) 151-158.

DOI: 10.1016/s0921-5093(98)01097-1

Google Scholar

[17] Paul H, Morawiec A, Bouzy E, et al, Brass-type shear bands and their influence on texture formation, Metall. Mater. Trans. A 35 (2004) 3775-3786.

DOI: 10.1007/s11661-004-0283-5

Google Scholar

[18] Charney A. Davy, Ke Han, Peter N. Kalu, Scott T. Bole, Examinations of Cu-Ag composite conductors in sheet forms, IEEE Trans. Appl. Supercond. 18 (2008) 560-563.

DOI: 10.1109/tasc.2008.922510

Google Scholar

[19] Ke Han, Vince J. Toplosky, Robert Goddard, et al, Impacts of heat treatment on properties and microstructure of Cu16at%Ag conductors, IEEE Trans. Appl. Supercond. 22 (2012) 6900204.

DOI: 10.1109/tasc.2011.2174575

Google Scholar

[20] H. Paul, J.H. Driver, Z. Jasienski, Shear banding and recrystallization nucleation in a Cu-2%Al alloy single crystal, Acta Mater. 50 (2002) 815-830.

DOI: 10.1016/s1359-6454(01)00381-0

Google Scholar

[21] Y.Z. Tian, J.J. Li, P. Zhang, et al, Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion, Acta Mater. 60 (2012) 269-281.

DOI: 10.1016/j.actamat.2011.09.058

Google Scholar