Preparation of Alumina Powders through Pyrocatechol, Resorcinol Mediated Sol-Gel Method

Article Preview

Abstract:

Ultrafine alumina powders were synthesized through pyrocatechol and resorcinol mediated sol-gel process. Aluminum nitrate was applied as the Al source and PVP was the dispersant. X-ray diffraction (XRD) study displayed that γ-Al2O3 powders formed in the range of 800-900 °C, and then γ-Al2O3 transformed to α-Al2O3 at higher temperatures, pure α-Al2O3 powders could be obtained at 1000 °C by using resorcinol as organic monomer. The results of transmission electron microscopy (TEM) revealed that Al2O3 nanoparticles with γ crystalline phase had grain sizes in the range of 5-40 nm. Scanning electron microscopy (SEM) observation displayed that the morphology of the prepared α-Al2O3 powders had aggregated bodies formed by Al2O3 grains in the range of 0.2-0.5μm. These results provide a new way of preparation of alumina powders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

742-747

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kakihana, Sol-Gel, preparation of high temperature superconducting oxides, J. Sol-Gel Sci. Eng. 6 (1996) 7-55.

DOI: 10.1007/bf00402588

Google Scholar

[2] J. Liu, S. Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Y. Zhao, G. Q. Lu, Extension of The Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon Spheres, Angew. Chem. Int. Ed. 50 (2011) 5947-5951.

DOI: 10.1002/anie.201102011

Google Scholar

[3] M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels handbook, First edition, Springer, New York, (2011).

Google Scholar

[4] R. Pekala, Organic aerogels from the ploycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221-3227.

DOI: 10.1007/bf01139044

Google Scholar

[5] S. C. Shen, W. K. Ng, L. S. O. Chia, Y. C. Dong, Morphology controllable synthesis of nanostructured boehmite and γ-alumina by facile dry gel conversion, Cryst. Growth Des. 12 (2012) 4987-4994.

DOI: 10.1021/cg300915p

Google Scholar

[6] S. Ghosh, M. K. Naskar, Synthesis of mesoporous γ-alumina nanorods using a double surfactant system by reverse microemulsion process, RSC Advances. 3 (2013) 4207-4211.

DOI: 10.1039/c3ra22793f

Google Scholar

[7] S. F. Wang, X. Xiang, Q. P. Ding, X. L. Gao, C. M. Liu, Z. J. Li, X. T. Zu, Size-controlled synthesis and photoluminescence of porous monolithic α-alumina, Ceram. Int. 39 (2013) 2943-2948.

DOI: 10.1016/j.ceramint.2012.09.068

Google Scholar

[8] F. Mirjalili, M. Hasmaliza, L. C. Abdullah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method, Ceram. Int. 36 (2010) 1253-1257.

DOI: 10.1016/j.ceramint.2010.01.009

Google Scholar

[9] K. Nakane, M. Seto, S. Irie, T. Ogihara, N. Ogata, Alumina nanofibers obtained from poly(vinyl alcohol)/boehmite nanocomposites, J. Appl. Polymer Sci. 121 (2011) 1774-1779.

DOI: 10.1002/app.33319

Google Scholar

[10] J. Ma, B. Wu, Effect of surfactants on preparation of nanoscale α-Al2O3 powders by oil-in-water microemulsion, Adv. Powder Technol. 24 (2013) 354-358.

DOI: 10.1016/j.apt.2012.08.008

Google Scholar

[11] Y. K. Park, E.H. Tadd, M. Zubris, R. Tannenbaum, Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides, Mater. Res. Bull. 40 (2005) 1506-1512.

DOI: 10.1016/j.materresbull.2005.04.031

Google Scholar

[12] W. Qin, C. Peng, M, Lv, J. Q. Wu, Preparation and properties of high-purity porous alumina support at low sintering temperature, Ceram. Int. 40 (2014) 13741-13746.

DOI: 10.1016/j.ceramint.2014.05.044

Google Scholar