[1]
Yuan-Ching Lin, Ju-Jen Liu, Ben-Yuan Lin, et al. Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds[J]. Materials and Design, 2012, 35 : 350–357.
DOI: 10.1016/j.matdes.2011.08.050
Google Scholar
[2]
Y.S. Sato, S.H.C. Park, M. Michiuchi, et al. Constitutional liquation during dis- similar friction stir welding of Al and Mg alloys [J]. Scripta Mater, 2004, 50: 1233− 1236.
DOI: 10.1016/j.scriptamat.2004.02.002
Google Scholar
[3]
D.Q. Sun, B. Lang, D.X. Sun, et al. Microstructures and mechanical properties of resistance spot welded magnesium alloy joints, Mater Sci Eng A, 2007, 460–461: 494–8.
DOI: 10.1016/j.msea.2007.01.073
Google Scholar
[4]
Mumin Tutar, Hakan Aydin, Celalettin Yuce, et al. The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array [J]. Materials and Design, 2014, 63: 789-797.
DOI: 10.1016/j.matdes.2014.07.003
Google Scholar
[5]
Tian-jiao LUO, Bao-liang SHI, Qi-qiang DUAN, et al. Fatigue behavior of friction stir spot welded AZ31 Mg alloy sheet joints [J]. Transactions of Nonferrous Metals of Society of China, 2013, 33: 1949−(1956).
DOI: 10.1016/s1003-6326(13)62682-5
Google Scholar
[6]
M. Hosseini, H. Danesh Manesh. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy [J]. Materials and Design, 2010, 31 : 4786–4791.
DOI: 10.1016/j.matdes.2010.05.007
Google Scholar
[7]
M.A. Mofid, A. Abdollah-zadeh, F. Malek Ghaini. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy [J]. Materials and Design, 2012, 36: 161–167.
DOI: 10.1016/j.matdes.2011.11.004
Google Scholar
[8]
Darras B, Omar M, Khraisheh M. Experimental thermal analysis of friction stir processing. Mater Sci Forum, 2007, 539–543: 3801–6.
DOI: 10.4028/www.scientific.net/msf.539-543.3801
Google Scholar
[9]
Basil Darras, Emad Kishta. Submerged friction stir processing of AZ31 Magnesium alloy. Materials and Design, 2013, 47: 133–137.
DOI: 10.1016/j.matdes.2012.12.026
Google Scholar
[10]
Hofmann DC, Vecchio KS. Submerged friction stir processing (SFSP): an improved method for creating ultra-fine-grained bulk materials. Mater Sci Eng A, 2005, 402: 234–41.
DOI: 10.1016/j.msea.2005.04.032
Google Scholar
[11]
Fang Chai, Datong Zhang, Yuanyuan Li. High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing. Mater Sci Eng A, 2013, 568: 40–48.
DOI: 10.1016/j.msea.2013.01.026
Google Scholar
[12]
Yong Zhao, Zhengping Lu, Keng Yan. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Materials and Design, 2015, 65: 675–681.
DOI: 10.1016/j.matdes.2014.09.046
Google Scholar
[13]
Miao Q, Hu L, Wang X, Wang E. Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J Alloys Compd, 2010, 493: 87–90.
DOI: 10.1016/j.jallcom.2009.12.049
Google Scholar
[14]
Darras B. A model to predict the resulting grain size of friction stir processed AZ31 magnesium alloy. J Mater Eng Perform, 2012, 21: 1243–8.
DOI: 10.1007/s11665-011-0039-5
Google Scholar