Discharge Enhancement Effect of Inorganic Nanometer Spark Plasma Sintering Aid

Article Preview

Abstract:

CaF2 inorganic nanometer powder particles were used as sintering aid to sintering good conductive Fe-6.5Si alloy. By a physical method, CaF2 inorganic nanopowder particles were made with a granularity of 15-30 nm assembled between micron-sized Fe-6.5Si powder particles prepared by gas atomization. 6.5 % Si high silicon steel were fabricated by spark plasma sintering (SPS) with varying contents of CaF2. The discharge enhancement effect of CaF2 inorganic nanospark plasma aid is confirmed. The initial sintering temperature and the final sintering temperature were decreased by 75 °C and 70 °C respectively with 0.5 % CaF2 inorganic nanopowder aid. In the case of reduced 60 °C, the higher density for the particles with the addition of CaF2 was observed compared with without CaF2. When the nanopowder was 2%, sintering performance decreased. The study indicates that sintering pressure has an enormous effect on the Fe-6.5Si sintering effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

829-834

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.A. Munir, D.V. Quach, M. Ohyanagi, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, J. Am. Ceram. Soc. 94(2011) 1-19.

DOI: 10.1111/j.1551-2916.2010.04210.x

Google Scholar

[2] E.A. Olevsky, S. Kandukuri, L. Froyen, Consolidation enhancement in spark-plasma sintering: Impact of high heating rates, J. Appl. Phys. 102(2007) 114913.

DOI: 10.1063/1.2822189

Google Scholar

[3] S.H. Risbud, Y. -H. Han, Preface and historical perspective on spark plasma sintering, Scr. Mater. 69 (2013) 105-106.

DOI: 10.1016/j.scriptamat.2013.02.024

Google Scholar

[4] D.M. Hulbert, A. Anders, J. Andersson, E.J. Lavernia, A.K. Mukherjee, The absence of plasma in spark plasma sintering, Appl. Phys. 60(2009) 835-838.

DOI: 10.1016/j.scriptamat.2008.12.059

Google Scholar

[5] U. Anselmi-Tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions, Mater. Sci. Eng. A. 394(2005) 139–148.

DOI: 10.1016/j.msea.2004.11.019

Google Scholar

[6] M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Mater. Sci. Eng. A. 287(2000) 183-188.

DOI: 10.1016/s0921-5093(00)00773-5

Google Scholar

[7] G. -D. Zhan, J. Kuntz, J. Wan, J. Garay, and A. K. Mukherjee, Spark-plasma-sintered BaTiO3/Al2O3 nanocomposites, Mater. Sci. Eng. A. 356(2003) 443-446.

DOI: 10.1016/s0921-5093(02)00812-2

Google Scholar

[8] X. Song, X. Liu, J. Zhang, Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering, J. Am. Ceram. Soc. 89(2006) 494-500.

DOI: 10.1111/j.1551-2916.2005.00777.x

Google Scholar

[9] W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity, Mater. Sci. Eng. A. 394(2005) 132-138.

DOI: 10.1016/j.msea.2004.11.020

Google Scholar

[10] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A. 443(2007) 25-32.

DOI: 10.1016/j.msea.2008.02.031

Google Scholar

[11] Y. Xiong , Z.Y. Fu, H. Wang, Y.C. Wang, Q.J. Zhang , Microstructure and IR transmittance of spark plasma sintering translucent AlN ceramics with CaF2 additive, Mat Sci. Eng. B. 123(2005) 57–62.

DOI: 10.1016/j.mseb.2005.06.023

Google Scholar

[12] K.A. Khor, K.H. Cheng, L.G. Yu, F. Boey, Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride, Mat. Sci. Eng. A. 347(2003) 300-305.

DOI: 10.1016/s0921-5093(02)00601-9

Google Scholar

[13] N. Chawake, L.D. Pinto, A. K. Srivastav, On Joule heating during spark plasma sintering of metal powders, Scr. Mater. 93(2014) 52–55.

DOI: 10.1016/j.scriptamat.2014.09.003

Google Scholar