Study on the Preparation of PAMAS/PEO Fibrous Membranes by Electrospinning

Article Preview

Abstract:

Poly (aniline-co-2-methoxy aniline-5-sulfonic acid) (PAMAS) was synthesized by an oxidative polymerization in this paper. The resulted copolymer was characterized by Fourier transform infrared spectroscopy and UV-vis spectroscopy, respectively. The PAMAS fibrous membranes and PAMAS/PEO fibrous membranes were prepared via electrospinning. The influence of the molecular weight of PEO and the ratio of PAMAS/PEO in spinning solution on the fibrous morphology was studied. The results showed that PAMAS has fiber-forming ability separately. The addition of PEO was helpful to the the electrospinning of PAMAS. With the increasing of PEO’s molecular weight, the average diameter of the PAMAS/PEO fibers increased. With the increasing of PAMAS content, the fibrous average diameter has an increasing tendency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1039-1045

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] MacDiarmid A G: Synthetic Metals, 1997, 84(1-3): 27-34.

Google Scholar

[2] Kang E T, Neoh K G, Tan K L: Progress in Polymer Science, 1998, 23(2): 277-324.

Google Scholar

[3] Li X G, Zhou H J, Huang M R, et al: Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42(13): 3380-3394.

Google Scholar

[4] He B B, Zhong A Y, Chen D B, et al: Polymer Materials Science and Engineering, 2002, 18(3): 65-69.

Google Scholar

[5] Chuangchote S, Sirivat A, Supaphol P: Nanotechnology, 2007, 18(14): 145705-145712.

Google Scholar

[6] Xie L, Shao Z Q: Journal of Functional materials, 2012, 43(6): 715-717.

Google Scholar

[7] Neubert S, Pliszka D, Thavasi V, et al: Materials Science and Engineering: B, 2011, 176(8): 640-646.

Google Scholar

[8] Macagnano A, Zampetti E, Pantalei S, et al: Thin Solid Films, 2011, 520(3): 978-985.

DOI: 10.1016/j.tsf.2011.04.175

Google Scholar

[9] Reneker D H, Chun I: Nanotechnology, 1996, 7(3): 216-223.

Google Scholar

[10] Zampetti E, Pantalei S, Scalese S, et al: Biosensors and Bioelectronics, 2011, 26(5): 2460-2465.

DOI: 10.1016/j.bios.2010.10.032

Google Scholar

[11] Chaudhari S, Sharma Y, Archana P S, et al: Journal of Applied Polymer Science, 2013, 129(4): 1660-1668.

Google Scholar

[12] Zhou H J, Xie Q F, Yan P, et al: Modern Chemical Industry, 2013, 34(8): 69-74.

Google Scholar

[13] Xie Q F, Zhou H J, Yan P, et al: Modern Chemical Industry, 2012, 32(10): 13-17.

Google Scholar

[14] Li X G, Duan W, Huang M R, et al: Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39(22): 3989-4000.

Google Scholar

[15] Nguyen M T, Kasai P, Miller J L, et al: Macromolecules, 1994, 27(13): 3625-3631.

Google Scholar

[16] polyanilines: The Journal of Physical Chenistry, 1989, 93(1): 495-499.

Google Scholar

[17] Shin Y M, Hohman M M, Brenner M P, et al : Polymer, 2001, 42(25): 9955-9967.

Google Scholar

[18] Koski A, Yim K, Shivkumar S: Materials Letters, 2004, 58(3-4): 493-497.

Google Scholar

[19] Gupta P, Elkins C, Long T, et al : Polymer, 2005, 46(13): 4799-4810.

Google Scholar