Effect of Negative Duty Cycle on Micro-Arc Oxidation Coating of Titanium Alloy

Article Preview

Abstract:

Micro-arc oxidation coating on TC4 titanium alloy was fabricated in Na2SiO3-Na3PO4 -NaOH electrolyte under constant voltage mode using a multifunctional device that is self-designed. The effects of negative duty cycle on the coating thickness, surface morphology, hardness, phase composition and anti-corrosion were studied via SEM, XRD etc. The results show that, with increasing the negative duty cycle, the coating thickness is reduced; the coating surface presents typical ceramic structure with micro-pores, the quantity of micro-pores on coating surface is reduced, the diameter of pores is enlarged and cracks are appeared with the increase of negative duty cycle; the phase ingredients are mainly composed of Ti, rutile and anatase TiO2 and the peak of matrix is disappeared while the dc is added to 45%; the hardness and corrosion resistance of coatings are distinctly improved compared with the matrix, with increasing the dc, the coating hardness is strengthened while the anti-corrosion is weakened.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1050-1054

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Du, S. X. Wang, Q. Zhao, W. H. Zhu: Rare. Met. Mater. Eng. 42(2013) 621-624.

Google Scholar

[2] X. Q. Wu, F. Q. Xie, Z. C. Hu, L. Wan: Trans. Nonferrous. Met. Soc. China. 20(2010) 1032-1036.

Google Scholar

[3] Y. D. Wang, W. H. Liu, A. L. Bao: Coal. Min. Mach. 31(2010) 65-67.

Google Scholar

[4] X. Z. Yang, S. R. Yu, L. Yang: J. Changchun Univ. 17(2007) 30-32.

Google Scholar

[5] F. B. Wang, S. C. Di: Mater. Prot. 44(2011) 11-13.

Google Scholar

[6] M. R. Bayati, M. Roya, F. F: Colloids Surf. A: Phys. Eng. Asp. 373(2011) 51-60.

Google Scholar

[7] N. S. Xie, L. Z. Wu: Technol. 33(2012) 416-418.

Google Scholar

[8] M. R. Bayati, A. Z. Moshfeg, F. F. Golestani: Appl. Catal A: General. 389(2010) 60-67.

Google Scholar

[9] M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran: Appl. Surf. Sci. 258(2012) 2416-2423.

Google Scholar

[10] K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, A. C. Bose, V. Muthupandi, N. K. Babu, S. Subramanina: Appl. Surf. Sci. 258(2012) 6853-6863.

Google Scholar

[11] H. T. Jiang, Z. C. Shao, B. Q. Jing: Proc. Ear. Plane. Sci. 2(2011)156-161.

Google Scholar

[12] F. J. Ren, Y. H. Ling, J. Y. Feng: Appl. Surf. Sci. 256(2010) 3735-3739.

Google Scholar

[13] Y. F. Wu, G. Yang, C. Pei, D. H. Lu, S. Zhang, R. S. Li: Foundry. Technol. 34(2013) 566-568.

Google Scholar

[14] G. Y. Chen, H. H. Wu, Y. Li, H. Chang, Y.G. Tang: Acta. Physic. Sinica. 59(2010) 1958-(1963).

Google Scholar

[15] J. B. Li, H. Zhao, X. H. Wang, Q. Z. Zhu: J. Shenyang Li Gong Univ. 30(2011) 59-61.

Google Scholar

[16] Y. H. Li, Y. Yuan, G. H. Xing: Mater. Prot. 44(2011) 39-41.

Google Scholar

[17] S. Cheng, D. Q. Wei, Y. Zhou: Proc. Eng. 27(2012)713-717.

Google Scholar

[18] H. Zhao, Q. Z. Zhu, Z. L. Wan, Y. Yi, J. Liang: Plating. Finishing. 33(2011) 34-36.

Google Scholar

[19] Y. P. Zhang, X. D. Liu, K. Lv, G. D. Che, S. F. Yan: Foundry. Technol. 32(2011) 184-188.

Google Scholar

[20] Y. G. Tang, H. H. Wu, H. Chang, G. Y. Chen, Y. Sang, Y. Z. Bai: Acta. Physic. Sinica. 58(2009) 4840-4845.

Google Scholar

[21] Z. D. Liu, H. Fu, M. J. Sun, Z. Y. Zhang: Light. Met. (2009) 45-48.

Google Scholar

[22] Y. G. Tang: Changchun: Jilin University. (2009) 69.

Google Scholar

[23] Z. Zhang: Lanzhou: Lanzhou University of Technology. (2012) 40.

Google Scholar

[24] Z. D. Liu, Z. Q. Xiang, Z. Y. Zhang, M. J. Sun, H. Fu: Light Met. (2008) 48-51.

Google Scholar