Progress in BiVO4 Photocatalyst under Visible Light

Article Preview

Abstract:

In recent years, as a novel photocatalyst with the excellent ability to absorb visible light, BiVO4 has drawn increasing attention. In this paper, the photocatalytic mechanism and the electronic band structure of BiVO4 were introduced in detail. On the basis of main modifications of BiVO4, progress in BiVO4 photocatalyst for degradation was further reviewed. The aim of this work is to provide guideline for the intensive studies of BiVO4 in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1429-1435

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang Chengcheng, Song Kailin, Feng Yi, et al. Preparation of NaLuF 4: Gd, Yb, Tm–TiO2 nanocomposite with high catalytic activity for solar light assisted photocatalytic degradation of dyes and wastewater[J]. RSC Advances. 2014, 4(74): 39118-39125.

DOI: 10.1039/c4ra05575f

Google Scholar

[2] Wu Tong, Zhou Xinggui, Zhang Hua, et al. Bi2S3 nanostructures: a new photocatalyst[J]. Nano Research. 2010, 3(5): 379-386.

Google Scholar

[3] Zhang Ying, Deng Bin, Zhang Tierui, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. The Journal of Physical Chemistry C. 2010, 114(11): 5073-5079.

DOI: 10.1021/jp9110037

Google Scholar

[4] Ding Xing, Zhao Kun, Zhang Lizhi. Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions[J]. Environ Sci Technol. 2014, 48(10): 5823-5831.

DOI: 10.1021/es405714q

Google Scholar

[5] Bi Yingpu, Ouyang Shuxin, Umezawa Naoto, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc. 2011, 133(17): 6490-6492.

DOI: 10.1021/ja2002132

Google Scholar

[6] Pan Chengsi, Zhu Yongfa. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye[J]. Environ Sci Technol. 2010, 44(14): 5570-5574.

DOI: 10.1021/es101223n

Google Scholar

[7] Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. The Journal of Physical Chemistry Letters. 2010, 1(17): 2607-2612.

DOI: 10.1021/jz100978u

Google Scholar

[8] Song Limin, Zhang Shujuan, Wu Xiaoqing, et al. Graphitic C3N4 photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation[J]. Ind Eng Chem Res. 2012, 51(28): 9510-9514.

DOI: 10.1021/ie3010226

Google Scholar

[9] Huang Zhen-Feng, Pan Lun, Zou Ji-Jun, et al. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress[J]. Nanoscale. (2014).

DOI: 10.1039/c4nr05245e

Google Scholar

[10] Jo W J, Jang J W, Kong K J, et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity[J]. Angewandte Chemie International Edition. 2012, 51(13): 3147-3151.

DOI: 10.1002/anie.201108276

Google Scholar

[11] Kohtani S, Makino S, Kudo A, et al. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: Comparison between BiVO4 and TiO2 photocatalysts[J]. Chem Lett. 2002, 2002(7): 660-661.

DOI: 10.1246/cl.2002.660

Google Scholar

[12] Lim A R, Choh S H, Jang M S. Prominent ferroelastic domain walls in BiVO4 crystal[J]. Journal of Physics: Condensed Matter. 1995, 7(37): 7309.

DOI: 10.1088/0953-8984/7/37/005

Google Scholar

[13] Walsh A, Yan Y, Huda M N, et al. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals[J]. Chem Mater. 2009, 21(3): 547-551.

DOI: 10.1021/cm802894z

Google Scholar

[14] Ye Liqun, Chen Junnian, Tian Lihong, et al. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism[J]. Applied Catalysis B: Environmental. 2013, 130: 1-7.

DOI: 10.1016/j.apcatb.2012.10.011

Google Scholar

[15] Ye Liqun, Deng Kejian, Xu Feng, et al. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Phys. Chem. Chem. Phys. 2011, 14(1): 82-85.

DOI: 10.1039/c1cp22876e

Google Scholar

[16] Merupo V, Velumani S, Ordon K, et al. Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4)[J]. CrystEngComm. 2015, 17(17): 3366-3375.

DOI: 10.1039/c5ce00173k

Google Scholar

[17] Zhou Bin, Zhao Xu, Liu Huijuan, et al. Synthesis of visible-light sensitive M–BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants[J]. Sep Purif Technol. 2011, 77(3): 275-282.

DOI: 10.1016/j.seppur.2010.12.017

Google Scholar

[18] Cao Shao-Wen, Yin Zhen, Barber James, et al. Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts[J]. ACS applied materials & interfaces. 2011, 4(1): 418-423.

DOI: 10.1021/am201481b

Google Scholar

[19] Usai S, Obregón S, Becerro A I, et al. Monoclinic–tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity[J]. The Journal of Physical Chemistry C. 2013, 117(46): 24479-24484.

DOI: 10.1021/jp409170y

Google Scholar

[20] Luo Yangyang, Tan Guoqiang, Dong Guohua, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light[J]. Appl Surf Sci. 2015, 324: 505-511.

DOI: 10.1016/j.apsusc.2014.10.168

Google Scholar

[21] Zhang Aiping, Zhang Jinzhi. Synthesis and characterization of Ag/BiVO4 composite photocatalyst[J]. Appl Surf Sci. 2010, 256(10): 3224-3227.

DOI: 10.1016/j.apsusc.2009.12.009

Google Scholar

[22] Wang Min, Liu Qiong, Che Yinsheng, et al. Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method[J]. J Alloy Compd. 2013, 548: 70-76.

DOI: 10.1016/j.jallcom.2012.08.140

Google Scholar

[23] Wang Min, Zheng Haoyan, Liu Qiong, et al. High performance B doped BiVO4 photocatalyst with visible light response by citric acid complex method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, 114: 74-79.

DOI: 10.1016/j.saa.2013.05.032

Google Scholar

[24] Li Di, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. J Fluorine Chem. 2005, 126(1): 69-77.

DOI: 10.1016/j.jfluchem.2004.10.044

Google Scholar

[25] Jiang Haiyan, Dai Hongxing, Deng Jiguang, et al. Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination[J]. Solid State Sci. 2013, 17: 21-27.

DOI: 10.1016/j.solidstatesciences.2012.12.009

Google Scholar

[26] Min Wang, Yinsheng Che, Chao Niu, et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange[J]. J Rare Earth. 2013, 31(9): 878-884.

DOI: 10.1016/s1002-0721(12)60373-1

Google Scholar

[27] Wang Min, Che Yinsheng, Niu Chao, et al. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol–gel method for photodegradion of methyl orange[J]. J Hazard Mater. 2013, 262: 447-455.

DOI: 10.1016/j.jhazmat.2013.08.063

Google Scholar

[28] Wang Min, Niu Chao, Liu Qiong, et al. Enhanced photo-degradation methyl orange by N–F co-doped BiVO4 synthesized by sol–gel method[J]. Mat Sci Semicon Proc. 2014, 25: 271-278.

DOI: 10.1016/j.mssp.2013.12.031

Google Scholar

[29] Xing Yangyang, Li Qiuye, Yang Jiangjun. Research progress of the Ag-based plasmon resonance photocatalysts[J]. Functional Materials. 2012(16): 2126-2130.

Google Scholar

[30] Bian Zhao-Yong, Zhu Ya-Qi, Zhang Jun-Xiao, et al. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts[J]. Chemosphere. 2014, 117: 527-531.

DOI: 10.1016/j.chemosphere.2014.09.017

Google Scholar

[31] Zhang Mingyi, Shao Changlu, Li Xinghua, et al. Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light[J]. Nanoscale. 2012, 4(23): 7501-7508.

DOI: 10.1039/c2nr32213g

Google Scholar

[32] Li Changjiang, Wang Shengping, Wang Tuo, et al. Monoclinic Porous BiVO4 Networks Decorated by Discrete g-C3N4 Nano-Islands with Tunable Coverage for Highly Efficient Photocatalysis[J]. Small. 2014, 10(14): 2783-2790.

DOI: 10.1002/smll.201400506

Google Scholar

[33] Madhusudan P, Ran J, Zhang Jun, et al. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental. 2011, 110: 286-295.

DOI: 10.1016/j.apcatb.2011.09.014

Google Scholar

[34] Su Juan, Zou Xiaoxin, Li Guodong, et al. Macroporous V2O5 − BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges[J]. The Journal of Physical Chemistry C. 2011, 115(16): 8064-8071.

Google Scholar

[35] Lin Haili, Ye Huifang, Chen Shifu, et al. One-pot hydrothermal synthesis of BiPO4/BiVO4 with enhanced visible-light photocatalytic activities for methylene blue degradation[J]. RSC Advances. 2014, 4(21): 10968-10974.

DOI: 10.1039/c3ra45288c

Google Scholar

[36] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS applied materials & interfaces. 2012, 4(7): 3718-3723.

DOI: 10.1021/am300812n

Google Scholar

[37] Tian Yanlong, Chang Binbin, Yang Zhichong, et al. Graphitic carbon nitride–BiVO4 heterojunctions: simple hydrothermal synthesis and high photocatalytic performances[J]. RSC Advances. 2014, 4(8): 4187-4193.

DOI: 10.1039/c3ra46079g

Google Scholar

[38] Li Rengui, Zhang Fuxiang, Wang Donge, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature communications. 2013, 4: 1432.

DOI: 10.1038/ncomms2401

Google Scholar

[39] Li Rengui, Han Hongxian, Zhang Fuxiang, et al. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4[J]. Energy & Environmental Science. 2014, 7(4): 1369-1376.

DOI: 10.1039/c3ee43304h

Google Scholar

[40] Li Houfen, Yu Hongtao, Quan Xie, et al. Improved Photocatalytic Performance of Heterojunction by Controlling the Contact Facet: High Electron Transfer Capacity between TiO2 and the {110} Facet of BiVO4 Caused by Suitable Energy Band Alignment[J]. Adv Funct Mater. (2015).

DOI: 10.1002/adfm.201500521

Google Scholar

[41] Li Changjiang, Zhang Peng, Lv Rui, et al. Selective deposition of Ag3PO4 on monoclinic BiVO4 (040) for highly efficient photocatalysis[J]. Small. 2013, 9(23): 3951-3956.

DOI: 10.1002/smll.201301276

Google Scholar