[1]
Wang Chengcheng, Song Kailin, Feng Yi, et al. Preparation of NaLuF 4: Gd, Yb, Tm–TiO2 nanocomposite with high catalytic activity for solar light assisted photocatalytic degradation of dyes and wastewater[J]. RSC Advances. 2014, 4(74): 39118-39125.
DOI: 10.1039/c4ra05575f
Google Scholar
[2]
Wu Tong, Zhou Xinggui, Zhang Hua, et al. Bi2S3 nanostructures: a new photocatalyst[J]. Nano Research. 2010, 3(5): 379-386.
Google Scholar
[3]
Zhang Ying, Deng Bin, Zhang Tierui, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. The Journal of Physical Chemistry C. 2010, 114(11): 5073-5079.
DOI: 10.1021/jp9110037
Google Scholar
[4]
Ding Xing, Zhao Kun, Zhang Lizhi. Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions[J]. Environ Sci Technol. 2014, 48(10): 5823-5831.
DOI: 10.1021/es405714q
Google Scholar
[5]
Bi Yingpu, Ouyang Shuxin, Umezawa Naoto, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc. 2011, 133(17): 6490-6492.
DOI: 10.1021/ja2002132
Google Scholar
[6]
Pan Chengsi, Zhu Yongfa. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye[J]. Environ Sci Technol. 2010, 44(14): 5570-5574.
DOI: 10.1021/es101223n
Google Scholar
[7]
Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. The Journal of Physical Chemistry Letters. 2010, 1(17): 2607-2612.
DOI: 10.1021/jz100978u
Google Scholar
[8]
Song Limin, Zhang Shujuan, Wu Xiaoqing, et al. Graphitic C3N4 photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation[J]. Ind Eng Chem Res. 2012, 51(28): 9510-9514.
DOI: 10.1021/ie3010226
Google Scholar
[9]
Huang Zhen-Feng, Pan Lun, Zou Ji-Jun, et al. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress[J]. Nanoscale. (2014).
DOI: 10.1039/c4nr05245e
Google Scholar
[10]
Jo W J, Jang J W, Kong K J, et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity[J]. Angewandte Chemie International Edition. 2012, 51(13): 3147-3151.
DOI: 10.1002/anie.201108276
Google Scholar
[11]
Kohtani S, Makino S, Kudo A, et al. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: Comparison between BiVO4 and TiO2 photocatalysts[J]. Chem Lett. 2002, 2002(7): 660-661.
DOI: 10.1246/cl.2002.660
Google Scholar
[12]
Lim A R, Choh S H, Jang M S. Prominent ferroelastic domain walls in BiVO4 crystal[J]. Journal of Physics: Condensed Matter. 1995, 7(37): 7309.
DOI: 10.1088/0953-8984/7/37/005
Google Scholar
[13]
Walsh A, Yan Y, Huda M N, et al. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals[J]. Chem Mater. 2009, 21(3): 547-551.
DOI: 10.1021/cm802894z
Google Scholar
[14]
Ye Liqun, Chen Junnian, Tian Lihong, et al. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism[J]. Applied Catalysis B: Environmental. 2013, 130: 1-7.
DOI: 10.1016/j.apcatb.2012.10.011
Google Scholar
[15]
Ye Liqun, Deng Kejian, Xu Feng, et al. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Phys. Chem. Chem. Phys. 2011, 14(1): 82-85.
DOI: 10.1039/c1cp22876e
Google Scholar
[16]
Merupo V, Velumani S, Ordon K, et al. Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4)[J]. CrystEngComm. 2015, 17(17): 3366-3375.
DOI: 10.1039/c5ce00173k
Google Scholar
[17]
Zhou Bin, Zhao Xu, Liu Huijuan, et al. Synthesis of visible-light sensitive M–BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants[J]. Sep Purif Technol. 2011, 77(3): 275-282.
DOI: 10.1016/j.seppur.2010.12.017
Google Scholar
[18]
Cao Shao-Wen, Yin Zhen, Barber James, et al. Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts[J]. ACS applied materials & interfaces. 2011, 4(1): 418-423.
DOI: 10.1021/am201481b
Google Scholar
[19]
Usai S, Obregón S, Becerro A I, et al. Monoclinic–tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity[J]. The Journal of Physical Chemistry C. 2013, 117(46): 24479-24484.
DOI: 10.1021/jp409170y
Google Scholar
[20]
Luo Yangyang, Tan Guoqiang, Dong Guohua, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light[J]. Appl Surf Sci. 2015, 324: 505-511.
DOI: 10.1016/j.apsusc.2014.10.168
Google Scholar
[21]
Zhang Aiping, Zhang Jinzhi. Synthesis and characterization of Ag/BiVO4 composite photocatalyst[J]. Appl Surf Sci. 2010, 256(10): 3224-3227.
DOI: 10.1016/j.apsusc.2009.12.009
Google Scholar
[22]
Wang Min, Liu Qiong, Che Yinsheng, et al. Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method[J]. J Alloy Compd. 2013, 548: 70-76.
DOI: 10.1016/j.jallcom.2012.08.140
Google Scholar
[23]
Wang Min, Zheng Haoyan, Liu Qiong, et al. High performance B doped BiVO4 photocatalyst with visible light response by citric acid complex method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, 114: 74-79.
DOI: 10.1016/j.saa.2013.05.032
Google Scholar
[24]
Li Di, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. J Fluorine Chem. 2005, 126(1): 69-77.
DOI: 10.1016/j.jfluchem.2004.10.044
Google Scholar
[25]
Jiang Haiyan, Dai Hongxing, Deng Jiguang, et al. Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination[J]. Solid State Sci. 2013, 17: 21-27.
DOI: 10.1016/j.solidstatesciences.2012.12.009
Google Scholar
[26]
Min Wang, Yinsheng Che, Chao Niu, et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange[J]. J Rare Earth. 2013, 31(9): 878-884.
DOI: 10.1016/s1002-0721(12)60373-1
Google Scholar
[27]
Wang Min, Che Yinsheng, Niu Chao, et al. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol–gel method for photodegradion of methyl orange[J]. J Hazard Mater. 2013, 262: 447-455.
DOI: 10.1016/j.jhazmat.2013.08.063
Google Scholar
[28]
Wang Min, Niu Chao, Liu Qiong, et al. Enhanced photo-degradation methyl orange by N–F co-doped BiVO4 synthesized by sol–gel method[J]. Mat Sci Semicon Proc. 2014, 25: 271-278.
DOI: 10.1016/j.mssp.2013.12.031
Google Scholar
[29]
Xing Yangyang, Li Qiuye, Yang Jiangjun. Research progress of the Ag-based plasmon resonance photocatalysts[J]. Functional Materials. 2012(16): 2126-2130.
Google Scholar
[30]
Bian Zhao-Yong, Zhu Ya-Qi, Zhang Jun-Xiao, et al. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts[J]. Chemosphere. 2014, 117: 527-531.
DOI: 10.1016/j.chemosphere.2014.09.017
Google Scholar
[31]
Zhang Mingyi, Shao Changlu, Li Xinghua, et al. Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light[J]. Nanoscale. 2012, 4(23): 7501-7508.
DOI: 10.1039/c2nr32213g
Google Scholar
[32]
Li Changjiang, Wang Shengping, Wang Tuo, et al. Monoclinic Porous BiVO4 Networks Decorated by Discrete g-C3N4 Nano-Islands with Tunable Coverage for Highly Efficient Photocatalysis[J]. Small. 2014, 10(14): 2783-2790.
DOI: 10.1002/smll.201400506
Google Scholar
[33]
Madhusudan P, Ran J, Zhang Jun, et al. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental. 2011, 110: 286-295.
DOI: 10.1016/j.apcatb.2011.09.014
Google Scholar
[34]
Su Juan, Zou Xiaoxin, Li Guodong, et al. Macroporous V2O5 − BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges[J]. The Journal of Physical Chemistry C. 2011, 115(16): 8064-8071.
Google Scholar
[35]
Lin Haili, Ye Huifang, Chen Shifu, et al. One-pot hydrothermal synthesis of BiPO4/BiVO4 with enhanced visible-light photocatalytic activities for methylene blue degradation[J]. RSC Advances. 2014, 4(21): 10968-10974.
DOI: 10.1039/c3ra45288c
Google Scholar
[36]
Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS applied materials & interfaces. 2012, 4(7): 3718-3723.
DOI: 10.1021/am300812n
Google Scholar
[37]
Tian Yanlong, Chang Binbin, Yang Zhichong, et al. Graphitic carbon nitride–BiVO4 heterojunctions: simple hydrothermal synthesis and high photocatalytic performances[J]. RSC Advances. 2014, 4(8): 4187-4193.
DOI: 10.1039/c3ra46079g
Google Scholar
[38]
Li Rengui, Zhang Fuxiang, Wang Donge, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature communications. 2013, 4: 1432.
DOI: 10.1038/ncomms2401
Google Scholar
[39]
Li Rengui, Han Hongxian, Zhang Fuxiang, et al. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4[J]. Energy & Environmental Science. 2014, 7(4): 1369-1376.
DOI: 10.1039/c3ee43304h
Google Scholar
[40]
Li Houfen, Yu Hongtao, Quan Xie, et al. Improved Photocatalytic Performance of Heterojunction by Controlling the Contact Facet: High Electron Transfer Capacity between TiO2 and the {110} Facet of BiVO4 Caused by Suitable Energy Band Alignment[J]. Adv Funct Mater. (2015).
DOI: 10.1002/adfm.201500521
Google Scholar
[41]
Li Changjiang, Zhang Peng, Lv Rui, et al. Selective deposition of Ag3PO4 on monoclinic BiVO4 (040) for highly efficient photocatalysis[J]. Small. 2013, 9(23): 3951-3956.
DOI: 10.1002/smll.201301276
Google Scholar