[1]
P. Strom-Tejsen, D.P. Wyon, L. Lagercrantz, L. Fang, Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin, Indoor Air, 17(2007) 92-108.
DOI: 10.1111/j.1600-0668.2006.00458.x
Google Scholar
[2]
C.J. Simonson, M. Salonvaara, T. Ojanen, The effect of structures on indoor humidity - possibility to improve comfort and perceived air quality, Indoor Air, 12(2002) 243-51.
DOI: 10.1034/j.1600-0668.2002.01128.x
Google Scholar
[3]
S. Furmaniak, A.P. Terzyk, R. Golembiewski, P.A. Gauden, L. Czepirski, Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity, Food Res Int, 42(2009) 1203-14.
DOI: 10.1016/j.foodres.2009.06.004
Google Scholar
[4]
L.M. Reinikainen, J.J.K. Jaakkola, Significance of humidity and temperature on skin and upper airway symptoms, Indoor Air, 13(2003) 344-52.
DOI: 10.1111/j.1600-0668.2003.00155.x
Google Scholar
[5]
Y.F. Qiu, S.H. Yang, ZnO nanotetrapods: Controlled vapor-phase synthesis and application for humidity sensing, Adv Funct Mater, 17(2007) 1345-52.
DOI: 10.1002/adfm.200601128
Google Scholar
[6]
J.L. Zhang, G.X. Shen, W.J. Wang, X.J. Zhou, S.W. Guo, Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): preparation and humidity sensing characteristics, Journal Of Materials Chemistry, 20(2010).
DOI: 10.1039/c0jm02440f
Google Scholar
[7]
B.C. Cheng, B.X. Tian, C.C. Xie, Y.H. Xiao, S.J. Lei, Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes, Journal Of Materials Chemistry, 21(2011) 1907-12.
DOI: 10.1039/c0jm02753g
Google Scholar
[8]
X.F. Wang, B. Ding, J.Y. Yu, M.R. Wang, Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine, Journal Of Materials Chemistry, 21(2011) 16231-8.
DOI: 10.1039/c1jm13037d
Google Scholar
[9]
Y. Yao, X.D. Chen, X.Y. Li, X.P. Chen, N. Li, Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films, Sensor Actuat B-Chem, 191(2014) 779-83.
DOI: 10.1016/j.snb.2013.10.076
Google Scholar
[10]
Y. Yu, X.M. Zhang, J.P. Ma, Q.K. Liu, P. Wang, Y.B. Dong, Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single- crystal fashion, Chem Commun, 50(2014) 1444-6.
DOI: 10.1039/c3cc47723a
Google Scholar
[11]
D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279(1998) 548-52.
DOI: 10.1126/science.279.5350.548
Google Scholar
[12]
J.C. Tu, N. Li, W.C. Geng, R. Wang, X.Y. Lai, Y. Cao, T. Zhang, X.T. Li, S.L. Qiu, Study on a type of mesoporous silica humidity sensing material, Sensor Actuat B-Chem, 166(2012) 658-64.
DOI: 10.1016/j.snb.2012.03.033
Google Scholar
[13]
W.C. Geng, R. Wang, X.T. Li, Y.C. Zou, T. Zhang, J.C. Tu, Y. He, N. Li, Humidity sensitive property of Li-doped mesoporous silica SBA-15, Sensor Actuat B-Chem, 127(2007) 323-9.
DOI: 10.1016/j.snb.2007.04.021
Google Scholar
[14]
W.W. Zhang, R.W. Wang, Q. Zhang, J.X. Li, Humidity sensitive properties of K-doped mesoporous silica SBA-15, J Phys Chem Solids, 73(2012) 517-22.
DOI: 10.1016/j.jpcs.2011.10.030
Google Scholar
[15]
T. Benamor, L. Vidal, B. Lebeau, C. Marichal, Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica, Microporous and Mesoporous Materials, 153(2012) 100-14.
DOI: 10.1016/j.micromeso.2011.12.016
Google Scholar
[16]
J. Wang, L. Fang, F. Cheng, X. Duan, R. Chen, Hydrothermal Synthesis of SBA-15 Using Sodium Silicate Derived from Coal Gangue, Journal of Nanomaterials, 2013(2013) 1-6.
DOI: 10.1155/2013/352157
Google Scholar
[17]
Y. Ding, G. Yin, X. Liao, Z. Huang, X. Chen, Y. Yao, Key role of sodium silicate modulus in synthesis of mesoporous silica SBA-15 rods with controllable lengths and diameters, Materials Letters, 75(2012) 45-7.
DOI: 10.1016/j.matlet.2012.01.091
Google Scholar
[18]
K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate, Chem Mater, 16(2004) 899-905.
DOI: 10.1021/cm030622u
Google Scholar
[19]
W. Wang, W. Shan, H. Ru, N. Wu, A facile and versatile partitioned cooperative self-assembly process to prepare SBA-15s with larger mesopores, high microporosity and tunable particle sizes, Journal of Materials Chemistry, 21(2011) 12059.
DOI: 10.1039/c1jm12001h
Google Scholar
[20]
W. Wang, W.J. Shan, H.Q. Ru, Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate, Journal Of Materials Chemistry, 21(2011) 17433-40.
DOI: 10.1039/c1jm13669k
Google Scholar
[21]
Y. Zhu, J.C. Chen, H.M. Li, Y.H. Zhu, J.Q. Xu, Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor, Sensor Actuat B-Chem, 193(2014) 320-5.
DOI: 10.1016/j.snb.2013.11.091
Google Scholar
[22]
Y.H. Zhu, H. Yuan, J.Q. Xu, P.C. Xu, Q.Y. Pan, Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film, Sensor Actuat B-Chem, 144(2010).
DOI: 10.1016/j.snb.2009.10.053
Google Scholar
[23]
B. Zheng, S. Cheng, W. Liu, M.H.W. Lam, H.J. Liang, Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor, Anal Biochem, 438(2013) 144-9.
DOI: 10.1016/j.ab.2013.03.030
Google Scholar
[24]
Q. Zheng, Y.H. Zhu, J.Q. Xu, Z.X. Cheng, H.M. Li, X.X. Li, Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent, Journal Of Materials Chemistry, 22(2012).
DOI: 10.1039/c1jm14779j
Google Scholar
[25]
Y. Zhang, S.Z. Luo, Y.J. Tang, L. Yu, K.Y. Hou, J.P. Cheng, X.Q. Zeng, P.G. Wang, Carbohydrate-protein interactions by clicked, carbohydrate self-assembled monolayers, Anal Chem, 78(2006) 2001-8.
DOI: 10.1021/ac051919+
Google Scholar
[26]
W.H. King, Piezoelectric Sorption Detector, Anal Chem, 36(1964) 1735-9.
Google Scholar
[27]
J.J. Li, Y. Liang, B.J. Dou, C.Y. Ma, R.J. Lu, Z.P. Hao, Q. Xie, Z.Q. Luan, K. Li, Nanocasting synthesis of graphitized ordered mesoporous carbon using Fe-coated SBA-15 template, Materials Chemistry And Physics, 138(2013) 484-9.
DOI: 10.1016/j.matchemphys.2012.12.003
Google Scholar
[28]
H.Y. Yoo, S. Bruckenstein, A novel quartz crystal microbalance gas sensor based on porous film coatings. A high sensitivity porous poly(methylmethacrylate) water vapor sensor, Anal Chim Acta, 785(2013) 98-103.
DOI: 10.1016/j.aca.2013.04.052
Google Scholar
[29]
S. Korposh, R. Selyanchyn, S.W. Lee, Nano-assembled thin film gas sensors. IV. Mass-sensitive monitoring of humidity using quartz crystal microbalance (QCM) electrodes, Sensor Actuat B-Chem, 147(2010) 599-606.
DOI: 10.1016/j.snb.2010.04.006
Google Scholar
[30]
Y.S. Zhang, K. Yu, R.L. Xu, D.S. Jiang, L.Q. Luo, Z.Q. Zhu, Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor, Sensor Actuat a-Phys, 120(2005) 142-6.
DOI: 10.1016/j.sna.2004.11.032
Google Scholar
[31]
X.F. Wang, B. Ding, J.Y. Yu, M.R. Wang, F.K. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance, Nanotechnology, 21(2010).
DOI: 10.1088/0957-4484/21/5/055502
Google Scholar
[32]
Y.G. Zhu, H. Li, J.Q. Xu, H. Yuan, J.J. Wang, X.X. Li, Monodispersed mesoporous SBA-15 with novel morphologies: controllable synthesis and morphology dependence of humidity sensing, Crystengcomm, 13(2011) 402-5.
DOI: 10.1039/c0ce00570c
Google Scholar
[33]
D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 120(1998).
DOI: 10.1021/ja974025i
Google Scholar
[34]
W. Wang, W. Shan, H. Ru, Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate, Journal of Materials Chemistry, 21(2011) 17433.
DOI: 10.1039/c1jm13669k
Google Scholar