Microstructure, Texture and Mechanical Properties of Mg-0.8 Zn-0.3 Gd-0.5 Ca Alloy Sheets

Article Preview

Abstract:

In this study, the microstructure, texture and mechanical properties of rolled Mg-0.8 Zn-0.3 Gd-0.5 Ca sheets have been investigated. It is shown that the as-cast microstructure of the Mg-0.8 Zn-0.3 Gd-0.5 Ca alloy is composed of coarse grains with fine intermetallic particles. The deformed microstructure of the as-rolled sheets results in the non-basal texture with triple peaks. Upon annealing treatment at different temperatures, the fraction of recrystallized microstructure is increased and the grains grow up. With the increase of annealing temperature, the (0002) basal pole of as-rolled sheets has transformed into texture with double peaks firstly and then into triple peaks. Accompanying the change of microstructure and texture, structure and mechanical anisotropy of the rolled sheets is modified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-175

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.Y. Yang, Z.S. Ji, H. Miura and T. Sakai. Trans. Nonferrous Met. Soc. China, Vol. 19 (2009) No. 1, p.55.

Google Scholar

[2] L.F. Wang, G.S. Huang, H.C. Li and H. Zhang. Trans. Nonferrous Met. Soc. China, Vol. 23 (2013) No. 4, p.916.

Google Scholar

[3] S.H. Kang, Y.S. Lee and J.H. Lee. J. Materials Pro. Tech. Vol. 201(2008)No. 1, p.436.

Google Scholar

[4] G.S. Hu, D.F. Zhang Y.F. Dong, Xia. Chen, L.Y. Jiang and F.S. Pan. Trans. Nonferrous Met. Soc. China, Vol. 25(2015) No. 2, p.1439.

Google Scholar

[5] J.Y. Lee, Y.S. Yun, B.C. Suh, N.J. Kim, W.T. Kim and D.H. Kim. J. Alloy. Compd. Vol. 589 (2014), p.240.

Google Scholar

[6] X.B. Gong, S.B. Kang, J.H. Cho and S.Y. Li. Mater. Charact. Vol. 97 (2014), p.183.

Google Scholar

[7] Y.C. Yuan, A.B. Ma, X.F. Gou, J.H. Jiang, F.M. Lu, D. Song and Y.T. Zhu. Mater. Sci. Eng. A, Vol. 630 (2015), p.45.

Google Scholar

[8] L.B. Tong, X.H. Li and H.J. Zhang. Mater. Sci. Eng. A, Vol. 563 (2013), p.177.

Google Scholar

[9] I.H. Jung, M. Sanjari, J. Kim and S. Yue. Scr. Mater. Vol. 102 (2015), p.1.

Google Scholar

[10] Y. P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang and Y.Y. Zhong. Mater. Sci. Eng. A, Vol. 644 (2015), p.152.

Google Scholar

[11] Z.H. Chen, W.J. Xia, Y.Q. Chen and D.F. Fu. Chin J. Nonferrous, Vol. 15 (2005) No. 1, p.1.

Google Scholar

[12] Y. Chino, J.S. Lee, K. Sassa, A. Kamiya and M. Mabuchi. Mater. Lett. Vol. 60 (2006), p.173.

Google Scholar

[13] B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri and S. Esmaeili. Mater. Sci. Eng. A, Vol. 620 (2015), p.76.

Google Scholar

[14] T. Laser, C. Hartig, M.R. Nurnberg, D. Letzig and R. Bormann. Acta Mater. Vol. 56 (2008)No. 12, p.2791.

Google Scholar

[15] B.P. Zhang, Y. Wang, L. Geng, C.X. Lu. Mater. Sci. Eng. A, Vol. 539(2012), p.56.

Google Scholar

[16] H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma and E.H. Han. J. Alloy Compd. Vol. 566 (2013), p.98.

Google Scholar

[17] D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim and N.J. Kim. Metall. Mater. Trans. A, Vol. 44 (2013), p.2950.

Google Scholar

[18] H. Yan, R. S. Chen and E.H. Han. Mater. Sci. Eng. A, Vol. 527 (2010), p.3317.

Google Scholar

[19] H. Yan, R. S. Chen, N. Zhen, J. Luo, S. Kamado, E.H. Han. J. Magnesium Alloys, Vol. 1 (2013), p.23.

Google Scholar