PtCo Nanoparticles Supported on Carbon for Hydrolysis of Ammonia Borane

Article Preview

Abstract:

Ammonia borane received extensive attention due to its hydrogen content as high as 19.6%. In present article we prepared the Pt-Co/C catalyst via ultrasonic immersion method and in situ reduction method. The catalyst was characterized by measuring the specific area. The influence of the catalyst on the properties of the hydrolysis of ammonia borane was tested, and the catalytic activity of the catalyst in cycle use was verified. Results shows that the catalytic activity of Pt0.5Co0.5/C is the highest, and the maximum hydrogen generation rate is 7229.613 mL/ (g ·min). It was verified that it remained good catalytic activity after cycle use for more than 10 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-256

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Xu and M. Chandra: Journal of Power Sources 163 (1) (2006), p.364.

Google Scholar

[2] L. Schlapbach and A. Zuttel: Nature, vol. 414 (6861), p.353.

Google Scholar

[3] H. L. Jiang, Q. Xu: Catalysis Today, vol. 170 (2011) , p.56.

Google Scholar

[4] M. Chandra, Q. Xu: Journal of Power Sources, vol. 156(2006), p.190.

Google Scholar

[5] Amit Kumar, Heather C. Johnson, Thomas N. Hooper, Andrew S. Weller, Andres G. Algarra and Stuart A. Macgregor: Royal Society of Chemistry, vol. 5(6), p.2546.

Google Scholar

[6] G. Z. Chen, Stefano Desinan, Renzo Rosei, Federico Rosei and D. L. Ma: Chemistry, vol. 18(2012), p.7925.

Google Scholar

[7] C. F. Yao, L. Zhang, Y. L. Cao, X. P. Ai and H. X. Yang: International Journal of Hydrogen Energy, vol. 33(2008), p.2462.

Google Scholar

[8] X. J. Yang, F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen: International Journal of Hydrogen Energy, vol. 36(2011), p. (1984).

Google Scholar

[9] H. L. Jiang, Tetsuo Umegaki, Tomoki Akita, X. B. Zhang, Masatake Haruta and Q. Xu: Chemistry, vol. 16(10), p.3132.

Google Scholar

[10] Yan J M, Zhang X B, Akita T, et al: J Am Chen Soc, vol. 132(15), p.5326.

Google Scholar

[11] Z. H Lu, J. P. Li, A. L. Zhu, Q. L. Yao, W. Huang, R. Y. Zhou, R. F. Zhou, X. S. Chen: International journal of hydrogen energy, vol. 38(2013), p.5330.

Google Scholar

[12] F. Y. Qiu, L. Li, G. Lui, Y. J. Wang, Y. P. Wang, C. H. An, Y. N. Xu, C. C. Xu, Y. Wang, L. F. Jiao and H. T. Yuan: International Journal of Hydrogen Energy, vol. 38(2013), p.3241.

Google Scholar

[13] Murat Rakap, Saim Özkar: Catalysis Today, vol. 183 (2012), p.17.

Google Scholar

[14] J. Du, F. Y. Cheng, M. Si, J. Liang, Z. L. Tao and J. Chen: International Journal of Hydrogen Energy, vol. 38(2013), p.5768.

Google Scholar

[15] L. F. Wang, Ralph T. Yang: Catalysis Reviews: Science and Engineering, vol. 52(4), p.411.

Google Scholar

[16] W. Y. Chen, J. Ji, X. Feng, X. Z. Duan, G. Qian, P. Li, X. G. Zhou, D. Chen, and W. K. Yuan: Journal of the American Chemical Society, vol. 136(48), p.16736.

Google Scholar

[17] Yuda Yürüm, alpay Taralp, T. Nejat veziroglu: International journal of hydrogen energy, vol. 34 (2009), p.3784.

Google Scholar

[18] X. J. Yang, F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen: International journal of hydrogen energy, vol. 34(2009), p.8785.

Google Scholar

[19] X. j. Yang, F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen: International journal of hydrogen energy, vol. 36(2011), p. (1984).

Google Scholar