Preparation and Characterization of a Magnetic Binary System Comprise of γ-Fe2O3 and α-FeO(OH) Nanoparticles

Article Preview

Abstract:

Magnetic nanoparticles were prepared from a low crystalline ferrihydrite (Fe5O7(OH)·4H2O) precursor by a chemically-induced transformation method using mixed FeCl2/NaOH solution. The products obtained were characterized using a vibrating sample magnetometer, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Experimental results show that while the concentration of NaOH was 0.17 mol/L, and the FeCl2 concentration was increased from 0.09 mol/L to 0.42 mol/L in the mixed solution, the as-prepared products were binary nanoparticle systems comprised of ferrimagnetic γ-Fe2O3 sphere-type particles and antiferromagnetic α-FeO(OH) rod-type particles. The resulting particles were highly crystalline. The volume ratio of γ-Fe2O3 and α-FeO(OH) particles was estimated from magnetization data, which showed that the volume of γ-Fe2O3 particles decreased and α-FeO(OH) particles increased with increasing FeCl2 concentration. Such nanoparticle systems could be suitable for synthesis of binary ferrofluids, which have different behavior to conventional ferrofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-271

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Knobel, W.C. Nunes, L.M. Socolovshy, E. De. Bissi, J.M. Vargas and J.C. Denardin: J. Nanosci. Nanotech, Vol. 8 (2008) No. 6, p.2836.

Google Scholar

[2] S. Odenbach (Ed. ): Collid Magnetic Fluids (Springer-Verlay, BerlinHeidelberg 2009).

Google Scholar

[3] J. Li and D.C. Li: Phys. Inter, Vol. 3 (2012) No. 1, p.28.

Google Scholar

[4] J.C. Bacri, S.D. Perzynski, V. Cabuil and R. Massart: J. Magn. Magn. Mater, Vol. 62 (1986) No. 1, p.36.

Google Scholar

[5] S. Tao, X.Q. Liu, X.F. Chu and Y.S. Shen: Sens. Actuator B, Vol. 61 (1999), p.33.

Google Scholar

[6] H. Bi, Q.W. Chen and T. Sun: Soli. Stat. Comm, Vol. 141 (2007), p.573.

Google Scholar

[7] T. Tuutijärvi, J. Lu, M. Sillanpää and G. Chen: J. Hazar. Mater, Vol. 166 (2009), p.1415.

Google Scholar

[8] S. Yu and G.M. Chow: J. Mater. Chem, Vol. 14 (2004), p.2781.

Google Scholar

[9] D.E. Madsen, L. Cercera-Gonrard, T. Kasma, R.E. Dumin-Borkouski, C. Koch, M.F. Hansen, C. Frandsen and S. Morap: J. Phys.: Condens. Mater, Vol. 21 (2009) No. 016007, p.1.

Google Scholar

[10] W. Schuele and V. Deetscreek: J. Appl. Phys, Vol. 33 (1962) No. 3, p.1136.

Google Scholar

[11] J. Coey, A. Barry, J. Brotto, H. Rakoto, S. Brennan and W. Mussel: J. Phys.: Condens. Matter, Vol. 7 (1995), p.759.

DOI: 10.1088/0953-8984/7/4/006

Google Scholar

[12] B. Lemaire, P. Davidson, J. Ferré, J. Janet, P. Panine, I. Dozov and J. Jolivet: Phys. Rev. Lett, Vol. 88 (2002) No. 12, pp.125507-1.

Google Scholar

[13] M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin and V.G. Harris: Inter. Mater. Rev, Vol. 49137 (2004) No. 3-4, p.125.

Google Scholar

[14] Q.M. Zhang, J. Li, Y.Q. Lin, X.D. Liu and H. Miao: J. Alloy. Compd, Vol. 508 (2010), p.396.

Google Scholar

[15] B.C. Wen, J. Li, Y.Q. Lin, X.D. Liu, J. Fu, H. Miao and Q.M. Zhang: Mater. Chem. Phys, Vol. 128 (2011), p.35.

Google Scholar

[16] H. Miao, J. Li, Y.Q. Lin, X.D. Liu, Q.M. Zhang and J. Fu: Chinese. Sci. Bull, Vol. 56 (2011) No. 22, p.2383.

Google Scholar

[17] L.H. Lin, J. Li and L. L Chen: Appl. Mech. Mater, Vol. 320 (2013), p.275.

Google Scholar

[18] J. Crange: The Magnetic Properties of solids (Edward Arnold, London 1977).

Google Scholar

[19] P. Trivedi, R. Patel, K. Parekh, R.V. Upadhyay and R.V. Mehta: Appl. Opt, Vol. 43 (2004) No. 18, p.3619.

Google Scholar

[20] H. Nishiyama, K. Katagiri, K. Hamada, K. Hamada and K. Kikuchi: Inter. J. Mod. Phys. B, Vol. 19 (2005), p.1437.

Google Scholar