Advance in the Fabrication of Ordered Ge/Si Nanostructure Array on Si Patterned Substrate by Nanosphere Lithography

Article Preview

Abstract:

The recent process in the fabrication of the ordered Ge/Si quantum dots (QDs) is reviewed. The fabrication step generally started on the preparation of patterned substrate prepared in advance by using several interesting methods, such as photo lithography, focus ion beam (FIB), reactive ion etching (RIE), and extreme ultraviolet lithography (EUV-IL) et al, which are introduced briefly in this article. Here, we’d like to focus on the detailed process of nanosphere lithography (NSL) which has the advantages of less cost and higher product compared with the referred methods. The ordered Ge nanostructures always show as Hexagonal close-packed array on the patterned Si substrate and have the advantages of potential applications in electronic and optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-292

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Wang, S. Y. Ke, J. Yang, et al: Nanotechnology, Vol. 26 (2015) No. 10, p.105201.

Google Scholar

[2] P. Klenovsky, M. Brehm, V. Krapek, et al: Physical Review B, Vol. 861 (2012) No. 11, p.6053.

Google Scholar

[3] A. N. Yablonskiy, N. A. Baidakova, A. V. Novikov, et al: Semiconductors, Vol. 47 (2013) No. 11.

Google Scholar

[4] V. V. Roddatis, S. NYakunin, A. L. Vasiliev, et al: Journal of Materials Research, Vol. 28 (2013) No. 11, p.1432.

Google Scholar

[5] F. Prins, A. Sumitro, M. C. Weidman, et al: Acs Applied Materials & Interfaces, Vol. 6 (2014) No. 5, p.3111.

Google Scholar

[6] H. Heidemeyer, U. Denker, C. Muller, et al: Physics Review Letter, Vol. 91 (2013) No. 19, p.196103.

Google Scholar

[7] T. Yang, S. Kohmoto, H. Nakamura, et al: Journal of Applied Physics, Vol. 93 (2013) No. 2, p.1190.

Google Scholar

[8] T. Happ, I. Tartakovskii, V. Kulakovskii, et al: Physical Review B, Vol. 66 (2002) No. 4.

Google Scholar

[9] D. Grutzmacher, T. Fromherz, C. Dais, et al: Nano Lett, Vol. 7 (2007) No. 10, p.3150.

Google Scholar

[10] M. Grydlik, M. Brehm, F. Hackl, et al: New Journal of Physics, Vol. 12 (2010) No. 6, p.063002.

Google Scholar

[11] M. Brehm, F. Montalenti, M. Grydlik, et al: Physical Review B, Vol. 80 (2009) No. 2.

Google Scholar

[12] A. Karmous, I. A. Fischer, O. Kirfel, et al: Physica Status Solidi B-Basic Solid State Physics, Vol. 249 (2012) No. 4, p.

Google Scholar

[13] Hai-peng Wang, Chong Wang, Jie Yang, et al: Applied Mechanics and Materials, Vol. 320 (2014), p.168.

Google Scholar

[14] C. Dais, G. Mussler, H. Sigg, et al: Epl, Vol. 84 (2008) No. 6, p.67017.

Google Scholar

[15] F. Karouta: Applied Physics, Vol. 47 (2013) No. 23, p.233501.

Google Scholar

[16] G. Vastola, M. Grydlik, M. Brehm, et al: Physical Review B, Vol. 84 (2011) No. 15, p.1.

Google Scholar

[17] T. Ito, S. Okazaki: Nature, Vol. 406 (2000) No. 6799, p.1027.

Google Scholar

[18] M. Totzeck, W. Ulrich, A. Gohnermeier, et al: Nature Photonics, Vol. 1 (2007) No. 11, p.629.

Google Scholar

[19] P. Chen, Y. Fan, Z. Zhong: Nanotechnology, Vol. 20 (2009) No. 9, p.095303.

Google Scholar

[20] W. Hai-Peng, K. Shao-Ying, Y. Jie, et al: Acta Phys. Sin., Vol. 63 (2014) No. 9, p.098104 (in Chinese).

Google Scholar

[21] J. Chen, P. T. Dong, D. Di, et al: Applied Surface Science, Vol. 270 (2013), p.6.

Google Scholar

[22] H. L. Chen, S. Y. Chuang, C. H. Lin, et al: Optics Express, Vol. 15 (2013) No. 22, p.14793.

Google Scholar

[23] Z. Lu, M. Zhou: J Colloid Interface Sci, Vol. 361 (2011) No. 2, p.429.

Google Scholar

[24] S. Reculusa, S. Ravaine: Applied Surface Science, Vol. 246 (2005) No. 4, p.409.

Google Scholar

[25] P. Massé, S. Ravaine: Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2005), p.148.

Google Scholar

[26] S. Watanabe, H. Shibata, S. Horiuchi, et al: Journal of Colloid and Interface Science, Vol. 343 (2010) No. 1, p.324.

Google Scholar

[27] S. Watanabe, Y. Akiyoshi, M. Matsumoto: Journal of Oleo Science, Vol. 62 (2013) No. 2, p.65.

Google Scholar

[28] E. J. Cabrera, R. Amade, L. Jaller, et al: Journal of Nanoparticle Research, Vol. 16 (2013) No. 1.

Google Scholar

[29] M. A. Ray, L. Jia: Advanced Materials, Vol. 19 (2007) No. 15, p. (2020).

Google Scholar

[30] S. M. Weekes, F. Y. Ogrin, W: Langmuir, Vol. 23 (2007) No. 3, p.1057.

Google Scholar

[31] F. Pan, J. Zhang, C. Cai, et al: Langmuir, Vol. 22 (2006) No. 17, p.7101.

Google Scholar

[32] C. T. Chen, F. G. Tseng, C. C. Chieng: Sensors and Actuators a-Physical, Vol. 130 (2006), p.12.

Google Scholar

[33] Y. Mouhamad, P. Mokarian-Tabari, N. Clarke, et al: Journal of Applied Physics, Vol. 116 (2014) No. 12, p.123513.

DOI: 10.1063/1.4896674

Google Scholar

[34] D. D. Brewer, S. Kumar: Physical Review E, Vol. 91 (2015) No. 2, p.022304.

Google Scholar

[35] C. Pazzini, P. D. Marcato, L. B. Prado, et al: Journal of Nanoscience and Nanotechnology, Vol. 15 (2013) No. 7, p.4837.

Google Scholar

[36] H. Shibata, T. Ogura, K. Nishio, et al: Silicon, Vol. 3(2013) No. 3, p.139.

Google Scholar

[37] Y. Ma, Z. Zhong, Q. Lv, et al: Colloids and Surfaces B-Biointerfaces, Vol. 112 (2013), p.408.

Google Scholar

[38] T. N. Hunter, E. J. Wanless, G. J. Jameson, et al: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 347 (2009) No. 1-3, p.81.

Google Scholar

[39] P. Stavroulakis, S. Boden, T. Johnson, et al: Optics Express, Vol. 21 (2013).

Google Scholar

[40] C. Arcos, K. Kumar, W. González-Viñas, et al: Physical Review E, Vol. 77(2008).

Google Scholar

[41] E. C. Brown, S. K. Wilke, D. A. Boyd, et al: Journal of Materials Chemistry, Vol. 20 (2010) No. 11, p.2190.

Google Scholar

[42] S. Garry, E. McCarthy, J. P. Mosnier, et al: Applied Surface Science, Vol. 257 (2011) No. 12, p.5159.

Google Scholar

[43] P. Colson, R. Cloots, C. Henrist: Langmuir, Vol. 27 (2011) No. 21, p.128006.

Google Scholar

[44] Y. J. Ma, Z. Zhong, Q. Lv, et al: Applied Physics Letters, Vol. 100 (2012) No. 15.

Google Scholar

[45] Y. J. Ma, Z. Zhong, X. J. Yang, et al: Nanotechnology, Vol. 24 (2013) No. 1, p.015304.

Google Scholar

[46] P. C. Zhenyang Zhong, Zuimin Jiang, and Guenther Bauer: Applied Physics Letters, Vol. 93 (2008).

Google Scholar

[47] C. Dais, H. H. Solak, E. Müller, et al: Applied Physics Letters, Vol. 92 (2008) No. 14, p.143102.

Google Scholar

[48] A. I. Yakimov, A. A. Bloshkin, A. V.: Semiconductor Science and Technology, Vol. 24 (2009) No. 9, p.095002.

Google Scholar

[49] X. Tan, X. L. Li, G. W. Yang: Physical Review B, Vol. 77 (2008) No. 24.

Google Scholar

[50] J. Cui, Q. He, X. M. Jiang, et al: Applied Physics Letters, Vol. 83 (2003) No. 14, p.2907.

Google Scholar

[51] H. Lei, T. Zhou, S. G. Wang, et al: Nanotechnology, Vol. 25 (2014) No. 5.

Google Scholar

[52] C.H. Chen, K. M. Reddy, N. P. Padture: Nanotechnology, Vol. 23 (2012), p.235603.

Google Scholar

[53] T. Sugaya, T. Amano, M. Mori, et al: Applied Physics Letters, Vol. 97 (2010) No. 4, p.043112.

Google Scholar

[54] S. Rodríguez-Bolívar, F. M. Gómez-Campos, A. Luque-Rodríguez, et al: Journal of Applied Physics, Vol. 109 (2011) No. 7, p.074303.

Google Scholar

[55] Y. Ma, Z. Zhong, Q. Lv, et al: Optics Express, Vol. 21 (2013) No. 5, p.6053.

Google Scholar