Recent Research Progress of Carbon Nanotube Arrays Prepared by Plasma Enhanced Chemical Vapor Deposition Method

Article Preview

Abstract:

Preparing carbon nanotube (CNT) arrays by plasma enhanced chemical vapor deposition (PECVD) method can dramatically reduce the deposition temperature, which makes it possible for in-situ fabrication of CNT-based nanoelectronic devices. In this paper, up to date research progress of CNT arrays prepared by PECVD method was presented, including radio frequency PECVD, direct current PECVD and microwave PECVD. Then, morphology and quality of CNT arrays were compared. In the end, we analyzed the possible challenges encountered through CNT array preparation by PECVD method at the moment and in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

308-314

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Gao, X. Mu, X.Y. Li, W.Y. Wang, Y. Meng, X.B. Xu, L.T. Chen, L.J. Cui, X. Wu and H.Z. Geng: Nanotechnology. 24 (2013) 435201-435208.

Google Scholar

[2] A. Lzadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima and K. Hata: Adv. Mater. 22 (2010) E235-E241.

DOI: 10.1002/adma.200904349

Google Scholar

[3] Y. Li, Z. Huang, K. Huang, D. Carnahan and Y. Xing: Energy Environ. Sci. 6 (2013) 3339-3345.

Google Scholar

[4] Y. Okigawa, S. Kishimoto, Y. Ohno and T. Mizutani: Nanotechnology 22 (2011) 195202-195208.

Google Scholar

[5] L.J. Cui, H.Z. Geng, W.Y. Wang, L.T. Chen and J. Gao: Carbon 54 (2013) 277-282.

Google Scholar

[6] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal and P.N. Provencio: Science 282 (1998) 1105-1107.

Google Scholar

[7] L. Wei, S. Bai, W. Peng, Y. Yuan, R. Si, K. Goh, R. Jiang and Y. Chen: Carbon 66 (2014) 134-143.

Google Scholar

[8] Y. Ono, S. Kishimoto, Y. Ohno and T. Mizutani: Nanotechnology 21 (2010) 205202-205205.

Google Scholar

[9] K. Ostrikov and H. Mehdipour: ACS Nano 5 (2011) 8372-8382.

Google Scholar

[10] D.H. Lee, W.J. Lee and S.O. Kim: Nano Lett. 9 (2009) 1427-1432.

Google Scholar

[11] M. Hiramatsu and M. Hori: Carbon nanowalls (Synthesis and emerging applications, Springer, Germany, 2010).

Google Scholar

[12] T. Nozaki, T. Karatsu, K. Ohnishi and K. Okazaki: Carbon 48 (2010) 232-238.

Google Scholar

[13] H.S. Uh, S. Park and B. Kim: Diamond Relat. Mater. 19 (2010) 586-589.

Google Scholar

[14] S. Park, D.W. Park, C.S. Yang, K. R. Kim, J.H. Kwak, H.M. So, C.W. Ahn, B.S. Kim, H. Chang and J.O. Lee: ACS Nano 5 (2011) 7061-7068.

DOI: 10.1021/nn2017815

Google Scholar

[15] Z.Q. Tian, S.H. Lim, C.K. Poh, Z. Tang, Z. Xia, Z. Luo, P.K. Shen, D. Chua, Y.P. Feng, Z. Shen and J. Lin: Adv. Energy Mater. 1 (2011) 1205-1214.

DOI: 10.1002/aenm.201100371

Google Scholar

[16] S. Neupane, M. Lastres and M. Chiarella: Carbon 50 (2012) 2641-2650.

Google Scholar

[17] D.H. Lee, S.O. Kim and W.J. Lee: J. Phys. Chem. C 114 (2010) 3454-3458.

Google Scholar

[18] D.H. Lee, W.J. Lee and S.O. Kim: Chem. Mater. 21 (2009) 1368-1374.

Google Scholar

[19] G. Zhong, S. Hofmann, F. Yan, H. Telg, J.H. Warner, D. Eder, C. Thomsen, W.I. Milne and J. Robertson, Acetylene: J. Phys. Chem. C 113 (2009) 17321-17325.

DOI: 10.1021/jp905134b

Google Scholar

[20] N. Peltekis, M. Mausser, S. Kumar, N. McEvoy, C. Murray and G.S. Duesberg: Chem. Vap. Deposition 18 (2012) 17-21.

DOI: 10.1002/cvde.201106925

Google Scholar

[21] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang and H. Dai: Science 314 (2006) 974-977.

DOI: 10.1126/science.1133781

Google Scholar

[22] A. Achour, A.A. El Mel, N. Bouts, E. Gautron, E. Grigore, B. Angleraud, L. Le Brizoual, P.Y. Tessier and M.A. Djouadi: Diamond Relat. Mater. 34 (2013) 76-83.

DOI: 10.1016/j.diamond.2013.02.006

Google Scholar

[23] R. Löffler, M. Häffner, G. Visanescu, H. Weigand, X. Wang, D. Zhang, M. Fleischer, A.J. Meixner, J. Fortágh and D.P. Kern: Carbon 49 (2011) 4197-4203.

DOI: 10.1016/j.carbon.2011.05.055

Google Scholar

[24] Z. Zhang, M. Shakerzadeh, B.K. Tay, X. Li, C. Tan, L. Lin, P. Guo, T. Feng and Z. Sun: Appl. Surf. Sci. 255 (2009) 6404-6407.

Google Scholar

[25] S. Sakurai, H. Nishino, D.N. Futaba, S. Yasuda, T. Yamada, A. Maigne, Y. Matsuo, E. Nakamura, M. Yumura and K. Hata: J. Am. Chem. Soc. 134 (2012) 2148-2153.

DOI: 10.1021/ja208706c

Google Scholar

[26] H. Sato, T. Sakai, A. Suzuki, K. Kajiwara, K. Hata and Y. Saito: Vacuum 83 (2009) 515-517.

Google Scholar

[27] L. Delzeit, I. McAninch, B.A. Cruden, D. Hash and B. Chen: J. Appl. Phys. 91 (2002) 6027-6033.

Google Scholar

[28] S. Hofmann, C. Ducati, J. Robertson and B. Kleinsorge: Appl. Phys. Lett. 83 (2003) 135-137.

Google Scholar

[29] H. Wang and J.J. Moore: Carbon 50 (2011) 1235-1242.

Google Scholar

[30] T. Kato and R. Hatakeyama: ACS Nano 4 (2010) 7395-7400.

Google Scholar

[31] H. Wang and Z.F. Ren: Nanotechnology 22 (2011) 405601-405606.

Google Scholar

[32] A. Oda, Y. Suda and A. Okita: Thin Solid Films 516 (2008) 6570-6574.

Google Scholar