The External Crystal Structure and Electronic Structure are Simulated about Ge0.6Si0.4 Quantum Dots

Article Preview

Abstract:

The alloy Ge0.6Si0.4 quantum dots were studied by using density functional theory. The change of the electronic structure of each crystal which grown in different simulation temperature condition were investigated by molecular dynamics simulation method. The results indicate that quantum dots of silicon germanium alloy occupy the narrow band gap of each crystal face from low to high temperature conditions. Since the atomic density and crystal configuration is different, the band gap values are relatively different. The mechanism of dielectric constant transition is well explained based on the inter-band and in-band shift of band structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-335

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pasic-acute S, Ilakovac K. Phys. Rev. A 1997 55: 4248.

Google Scholar

[2] Dovinos D, Williams D. Phys. rev. B. 2005, 72: 085313.

Google Scholar

[3] Kamins T I, Carr E C, Williams R S, Rosner S J. Appl Phys, 1997, 81: 211.

Google Scholar

[4] Ross F M, Tromp R M, Reuter M C. Science, 1999, 286: (1931).

Google Scholar

[5] Alivisatos: Science, 1996, 271: 933–937.

Google Scholar

[6] EI-Sayed M A: Acc Chem Res, 2001, 34: 257–264.

Google Scholar

[7] Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP: Science, 1998, 281: 2013–(2016).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[8] Bezryadin A, Lau CN, Tinkham M: Nature, 2000, 404: 971–974.

Google Scholar

[9] Raiteri P, Celino M, et al: Materials science and Engineering B, 2002, 89: 157–159.

Google Scholar

[10] Katcho N A, Richard M. -I, et al: Physics Research B 284 (2012) 58–63.

Google Scholar

[11] Stragier H, et al. Phys. Rev. Lett. 1992, 69: 3064.

Google Scholar

[12] Renevier H, et al. Phys. Rev. Lett. 1997, 78: 2775.

Google Scholar

[13] Proietti M G, et al. Phys. Rev. B 1999, 59: 5479.

Google Scholar

[14] Luciano A, Montoro, Marina S. Leite et al: Physical Chemistry C 2009, 113: 9018–9022.

Google Scholar

[15] Hytch, M J, Snoeck, E. Kilaas, R. Ultramicroscopy 1998, 74: 131–146.

Google Scholar

[16] Srivastava B B, Jana S, Pradhan N: Am Chem Soc, 2011, 133(4): 1007–1015.

Google Scholar

[17] Xie R G, Rutherford M, Peng X G: Am Chem Soc, 2009, 131(15): 5691–5697.

Google Scholar

[18] Cassette E, Pons T, Helle M, et al: Mater, 2010, 22(22): 6117–6124.

Google Scholar

[19] Park J, Kim S W: Mater Chem, 2011, 21(11): 3745–3750.

Google Scholar

[20] Kim S W, Zimmer J P, Ohnishi S, et al: Am Chem Soc, 2005, 127(30): 10526–10532.

Google Scholar

[21] Karar N, Jayaswal M, Halder S K, et al: Alloy Compd, 2007, 436(1-2): 61–64.

Google Scholar

[22] Chawla A K, Singhal S, Nagar S, et al: Appl Phys, 2010, 108(12): 123519.

Google Scholar

[23] Dong B H, Cao L X, su G, et al: Alloy Compd, 2010, 492(1-2): 363–367.

Google Scholar

[24] FACSKO S, KURZ H, DEKORSY T: PHYS REV B, 2001, 63 (16): 165329.

Google Scholar