Preparation and Characterizations of a-Fe2O3 Nanorods and their Properties

Article Preview

Abstract:

a-Fe2O3 nanorods over large areas were successfully synthesized by hydrothermal method, using FeCl3 as iron source and PVP as surfactant. The as-synthesized a-Fe2O3 nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetic measurement system (SQUID-VSM) . The results show that the nanorods prepared by hydrothermal method with the diameter of about 70 nm and the length of about 300 nm. The magnetic properties of the synthesized nanorods were studied, and the remnant magnetization and coercivity of the α-Fe2O3 nanorods at 300K are found to be 0.07emu/g and 2300Oe, respectively. The a-Fe2O3 nanorods reported here may have opportunities for both fundamental research and technological applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

346-348

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. U. Huynh,J. J. Dittmer, A. P.: Alivisatos, Science 2002, 295, 2425.

Google Scholar

[2] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan: Adv. Mater. 2003, 15, 353.

Google Scholar

[3] S.J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon: J. Am. Chem. Soc. 2000, 122, 8581.

Google Scholar

[4] B.D. Busbee, S.O. Obare, C.J. Murphy: Adv. Mater. 2003, 15, 414.

Google Scholar

[5] Y. Liu, C. Zhen, W. Wang, C. Yin, G. Wang: Adv. Mater. 2001, 13, 1883.

Google Scholar

[6] L. Vayssieres: Adv. Mater. 2003, 15, 464.

Google Scholar

[7] S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G. Cao: Adv. Funct. Mater. 2002, 12, 59.

Google Scholar

[8] J.C. Hulteen, C.R. Martin: J. Mater, Chem. 1997, 7, 1075.

Google Scholar

[9] L. Manna, E.C. Scher, A. P. Alivisatos: J. Am. Chem. Soc. 2000, 122, 12700.

Google Scholar

[10] M. Ponzi, C. Duschatzky, A. Carrascull, E. Ponzi: Appl. Catal. A 1998, 169, 373.

DOI: 10.1016/s0926-860x(98)00026-x

Google Scholar

[11] C. G. Granqvist: Elsevier, Amsterdam (1995).

Google Scholar

[12] R. M. Cornell, U. Schwertmann: The Iron Oxides (VCH, Weinheim 1996).

Google Scholar

[13] J. Livage: Chem, Mater. 1991, 3, 758.

Google Scholar

[14] A. S. S. Brown, J. S. J. Hargreaves, B. Rijniersce: Catal. Lett. 1998, 53, 7.

Google Scholar

[15] R.M. Cornell, U. Schwertmann: The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses (VCH, Weinheim, 1996), p.464.

Google Scholar

[16] H.T. Sun, C. Cantalini, M. Faccio, M. Pelino, M. Catalano, L. Tapfer: J. Am. Ceram. Soc. 1996, 79, 927.

Google Scholar

[17] M. Ozaki, S. Kratohvil, E. Matijevic: J. Colloid Interface Sci. 1984, 102, 146.

Google Scholar

[18] N. Kallay, I. Fischer, E. Matijevic: ColloidsSurf. 1985, 13, 145.

Google Scholar

[19] T. Sugimoto, K. Sakata: J. Colloid Interface Sci. 1992, 152, 587.

Google Scholar

[20] L. Vayssieres,N. Beermann,S. -E. Lindquist,A. Hagfeldt: Chem. Mater. 2001, 13, 233.

Google Scholar

[21] a)Y.Y. Fu, J. Chen,H. Zhang: Chem. Phys. Lett. 2001, 350, 491; b)Y. J. Xiong, Z. Q. Li, X.X. Li, B. Hu, Y. Xie: Inorg. Chem. 2004, 43, 6540.

Google Scholar

[22] X. G. Wen, S. H. Wang,Y. Ding, Z. L. Wang, S. H. Yang: J. Phys. Chem. B 2005, 109, 215.

Google Scholar

[23] Z. Q. Liu, D. H. Zhang, S. Han, C. Li, B. Lei, W. G. Lu, J. Y. Fang, C. W. Zhou: J. Am. Chem. Soc. 2005, 127, 6.

Google Scholar

[24] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik: J. Magn. Magn. Mater. 2005, 285, 296.

Google Scholar

[25] B. Tang, G. L. Wang, L. H Zhuo, J. C. Ge, L. Cui: J. Inorg. Chem. 2006, 45, 5196.

Google Scholar