Effect of Dispersant on Preparation of Barium Strontium Titanate Nanopowders by Microwave Hydrothermal Processing

Article Preview

Abstract:

Through the microwave-hydrothermal processing at 70 °C in 10 min, barium strontium titanate (BST) nanopowders are prepared by using butyl-titanate, barium nitrate and strontium nitrate as raw materials. Two kinds of dispersants namely polyethylene glycol 6000 and OP-10 are added, respectively. The dispersant mechanism and dosage on the crystal phase and microstructure are studied by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results show that the dispersive effect of OP-10 is better than the polyethylene glycol 6000. The long chain of OP-10 can be used to disperse nanopowders through a space steric hindrance mechanism, well-dispersed BST nanopowders are obtained when mass percent ratio of dispersant (OP-10) is 5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

362-368

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ezhilvalavan, T. Tseng, Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs, Material Chemistry Physics, 2000. 65: 227–248.

DOI: 10.1016/s0254-0584(00)00253-4

Google Scholar

[2] J. Wang, T. Zhang, R. Pan, J. Jiang, Z. Ma, C. Xiang, Investigation on the dielectric properties of (Ba, Sr)TiO3 thin films on hybrid electrodes, Materials Chemistry and Physics, 2010, 121: 28–31.

DOI: 10.1016/j.matchemphys.2009.12.035

Google Scholar

[3] Xiao C J, Lei C Q, Zou W J. New Sintering Method and Novel Characteristics of Nanocrystalline BaTiO3 Ceramics[J]. Materials Review, 2007, (21): 11-13(in Chinese).

Google Scholar

[4] Qiwei Zhang, Jiwei Zhai, Bo Shen, et al. Grain size effects on dielectric properties of barium strontium titanate composite ceramics[J]. Materials Research Bulletin, 2013, 48(3): 973-977.

DOI: 10.1016/j.materresbull.2012.11.085

Google Scholar

[5] Mohammad Reza Mohammadi, Derek J. Fray. Sol–gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature[J]. Particuology, 2011, 9(3): 235-242.

DOI: 10.1016/j.partic.2010.08.012

Google Scholar

[6] S. Fuentes, E. Chávez, L. Padilla-Campos, D.E. Diaz-Droguett. Influence of reactant type on the Sr incorporation grade and structural characteristics of Ba1-xSrxTiO3 (x=0-1) grown by sol-gel-hydrothermal synthesis[J]. Ceramics International, 2013, 39(8): 8823-8831.

DOI: 10.1016/j.ceramint.2013.04.070

Google Scholar

[7] M.L. Li, M.X. Xu. Effect of dispersant on preparation of barium–strontium titanate powders through oxalate co-precipitation method[J]. Materials Research Bulletin, 2009, 44(4): 937-942.

DOI: 10.1016/j.materresbull.2008.09.030

Google Scholar

[8] H. Avila, L. Ramajo, M. Reboredo, M. Castro, R. Parra. Hydrothermal synthesis ofBaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size[J]. Ceramics International, 2011, 37(7): 2383–2390.

DOI: 10.1016/j.ceramint.2011.03.032

Google Scholar

[9] A.Z. Simoes, F. Moura, T.B. Onofre, M.A. Ramirez, et al. Microwave- hydrothermal synthesis of barium strontium titanate nanoparticles[J]. Alloys and Compounds, 2010, 508(2): 620-624.

DOI: 10.1016/j.jallcom.2010.08.143

Google Scholar

[10] C. HuckAuthor Vitae, M. BäckerAuthor Vitae, S. Chaudhuri, et al. Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate[J]. Sensors and Actuators B: Chemical, 2014, 198(31): 102-109.

DOI: 10.1016/j.snb.2014.02.103

Google Scholar

[11] A.Z. Simões, F. Moura, T.B. Onofre, M.A. Ramirez, et al. Microwave- hydrothermal synthesis of barium strontium titanate nanoparticles[J]. Journal of Alloys and Compounds, 2010, 508(2): 620-624.

DOI: 10.1016/j.jallcom.2010.08.143

Google Scholar

[12] Wen Li, Zhijun Xu, Ruiqing Chu, Peng Fu, Jigong Hao. Sol-gel synthesis and characterization of Ba(1-x)SrxTiO3 ceramics[J]. Journal of Alloys and Compounds, 2010, 499: 255-258.

DOI: 10.1016/j.jallcom.2010.03.180

Google Scholar

[13] Ming-li Li, Ming-xia Xu. Effect of dispersant on preparation of barium–strontium titanate powders through oxalate co-precipitation method[J]. Materials Research Bulletin , 2009, 44: 937–942.

DOI: 10.1016/j.materresbull.2008.09.030

Google Scholar

[14] Li Meirong,Hao Qingyan,Qi Linyan,Huang Man. Relationship Between Viscosity Reducing Effect of OP-10 and Heavy Oil Composition[J]. Acta Petrolei Sinica (Petroleum Processing Section) 2014, 30 (4): 730-735.

Google Scholar

[15] Zhou Fengshan, Wu Jingguang. Advances in chemical viscosity-reducing methods and techniques for viscous crude oils[J]. Oil field chemistry, 2001, 18(3): 268-272.

Google Scholar

[16] Wang Jia. The Research on Dispersion of Sb Nanoparticles in Lubricating Oil[D]. Lanzhou, Lanzhou University and Technology, 2014(in Chinese).

Google Scholar

[17] Gao Lian, Sun Jing, Liu Yangqiao, et al. Nano powder and Surface Modification[M] Beijing, Chemical Industry Press, 2003(in Chinese).

Google Scholar

[18] Cao Wei, Xu Yebin, Wang Shijie, et al. Preparation of La(Zn0. 5Ti0. 5)O3 powders viacitric acid pre-cursor, Materials Letters, 2005, 59(14-15): 1914-(1918).

DOI: 10.1016/j.matlet.2005.02.025

Google Scholar