The Electronic Structure and Optical Properties of Co,C Co-Doped AlN Nanosheet

Article Preview

Abstract:

The electronic structure, band structure and optical properties of Co,C co-doped AlN are investigated by first-principles calculations. The calculated results show that some impurity bands emerge near the Fermi level, and the degree of hybridization becomes stronger for Co 3d states and Al 3s states. Which indicates that the electron transition become more active from valence band to conduction band and the electrical conductivity is enhanced. Compared with intrinsic AlN, the optical properties of co-doped AlN improves a lot. There emerge some new peaks in the low energy region and the absorption coefficient, reflectivity and refractive index has large improvement in visible and infrared range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-389

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Youwen Z, Yilin L, Hanyuan F. et al: Chinese Journal of Semiconductors. 2002 10: 1041-1045.

Google Scholar

[2] Huang J P, Wang L W, Gao J X et al: J. of Functional Materials and Devices, 1998, 4(4): 278-280(in Chinese).

Google Scholar

[3] Taniysu Y, Kasu M, Makimoto T: Appl Phys Lett, 2004, 85: 4672- 4674.

Google Scholar

[4] Schubert E F, Kim J K: Science, 2005, 308: 1274- 1278.

Google Scholar

[5] Wu S Y, Liu H X, Gu L, et al: Appl Phys Lett, 2003, 82(18): 3047-3049.

Google Scholar

[6] Polyakov A Y, Smirnov N B, Govorkov A V, et al: Appl Phys Lett, 2004, 85 (18): 4067-4069.

Google Scholar

[7] Kumar D, Antifakos J, Blamire M G, et al: Appl Phys Lett, 2004, 84( 24): 5004-5006.

Google Scholar

[8] Frazier R M, Thaler G T, Leifer J Y, et al: Appl Phys Lett, 2005, 86(5): 052101-052103.

Google Scholar

[9] Liu H X, Wu S Y, Singh R K, et al: Appl Phys Lett, 2004, 85: 4076- 4078.

Google Scholar

[10] Shi L J, Liu B G: Phys Rev B, 2007, 76: 115201- 115209.

Google Scholar

[11] Wu R Q, Peng G W, Liu L, et al: Appl Phys Lett, 89(14): 142501-142503.

Google Scholar

[12] Yang Z, Wen L, Pei L, et al: Solid Satate Communications, 2008, 147(7): 254-257.

Google Scholar

[13] Wei J, Peide H, Mei C, et al: J Appl Phys, 2007, 101(11): 113918-113921.

Google Scholar

[14] Ye L H, Freeman A J, Delley B: Phys Rev B, 2006, 73(3): 033203-033207.

Google Scholar

[15] Mahmoud Mirzaei, Ahmad Seif, Chemical Physics Letters, 2008, 461: 246-248.

Google Scholar

[16] Yao-Yao Qi, Yan Zhang, Jian-Min Zhang, Vincent Ji, Ke-Wei Xu: Computational and Theoretical Chemistry, 2011, 974: 151-158.

Google Scholar

[17] Angshuman Nag, Kalyan Raidongia, Kailash P. S. S. Hembram, Ranjan Datta, Umesh V. Waghmare and C. N. R. Rao: ACS Nano, 2010, 4, 1539-1544.

DOI: 10.1021/nn9018762

Google Scholar

[18] Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry G. Kvashnin, Jun Lou, Boris I. Yakobson and Pulickel M. Ajayan: Nano Lett., 2010, 10, 3209-3215.

DOI: 10.1021/nl1022139

Google Scholar

[19] Sh. Valedbagi, A. Fathalian, S: Optics Communications 309 (2013) 153-157.

Google Scholar

[20] Peng Liu, Abir De Sarkar, Rajeev Ahuja: Computational Materials Science 86 (2014) 206-210.

Google Scholar