[1]
R.M. Cornell, U. Schwertmann, The Iron Oxides, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (1997).
Google Scholar
[2]
A. Raman, B. Kuban, A. Razvan, The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products, Corros. Sci. 32 (1991).
DOI: 10.1016/0010-938x(91)90049-u
Google Scholar
[3]
C. Benoit, C. Bourbon, P. Berthet, S. Franger, Chemistry and electrochemistry of nanostructured iron oxyhydroxides, J. Phys. Chem. Solids, 67 (2006) 1265-1269.
DOI: 10.1016/j.jpcs.2006.01.057
Google Scholar
[4]
M. Gotic, S. Popovic, S. Music, Formation and characterization of δ-FeOOH, Mater. Lett. 21 (1994) 289-295.
Google Scholar
[5]
M.H. Francombe, H.P. Rooksby, Structure transformations effected by dehydration of diaspore, goethite and delta ferric oxides, Clay Minerals Bull, 4 (1959) 1-14.
DOI: 10.1180/claymin.1959.004.21.01
Google Scholar
[6]
J.M. Jimenez-Mateos, J. Morales, J.L. Tirado, Textural evolution of α-Fe2O3 obtained by thermal and mechanochemical decomposition of δ-FeOOH, J. Colloid Inter. Sci. 122 (1988) 507-513.
DOI: 10.1016/0021-9797(88)90385-2
Google Scholar
[7]
R.M. Cornell, U. Schwertmann, The Iron Oxides, second ed., WILEY-VCH, New York, (2003).
Google Scholar
[8]
Ph. Refait, J. -B. Memet, C. Bon, R. Sabot, J. -M.R. Genin, Formation of the Fe(II)–Fe(III) hydroxysulphate green rust during marine corrosion of steel, Corros. Sci. 45 (2003) 833–845.
DOI: 10.1016/s0010-938x(02)00184-1
Google Scholar
[9]
A.A. Olowe, Ph. Refait, J. -M.R. Genin, The influence of concentration on the oxidation of ferrous hydroxide in basic sulphated aqueous medium: particle size analysis of goethite and delta FeOOH, Corros. Sci. 32 (1991) 1003–1020.
DOI: 10.1016/0010-938x(91)90018-k
Google Scholar
[10]
Ph. Refait, O. Benali, M. Abdelmoula, J. -M.R. Genin, Formation of ferric green rust, and/or ferrihydrite by fast oxidation of iron(II–III) hydroxychloride green rust, Corros. Sci. 45 (2003) 2435–2449.
DOI: 10.1016/s0010-938x(03)00073-8
Google Scholar
[11]
G. Nauer, P. Strecha, N. Brinda-Konopik, G. Liptay, Spectroscopic and thermoanalytical charactetization of standard substances for the identification of reaction products on iron electrodes, J. Thermal Anal. 30 (1985) 813-830.
DOI: 10.1007/bf01913309
Google Scholar
[12]
C. Remazeilles, Ph, Refait, Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides, Corros. Sci. 50 (2008) 856-864.
DOI: 10.1016/j.corsci.2007.08.017
Google Scholar
[13]
F. Gilbert, P. Refait, F. Leveque, C. Remazeilles, E. Conforto, Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe(II) concentration and stirring speed, J. Phys. Chem. Solids, 69 (2008) 2124– 2130.
DOI: 10.1016/j.jpcs.2008.03.010
Google Scholar
[14]
O. Muller, R. Wilson, W. Krakow, δ-FeOOH and its solid solutions, J. Mater. Sci. 14 (1979) 2929-2936.
Google Scholar
[15]
M. Mohapatra, S. Anand, R.P. Das, C. Upadhyay, H.C. Verma, Effect of addition of Cu(II), Ni(II) and Co(II) ions on conversion of crystalline goethite to magnetite in NH3–FeSO4–H2O medium, Int. J. Miner. Process, 69 (2003) 75– 86.
DOI: 10.1016/s0301-7516(02)00096-0
Google Scholar
[16]
D. Andreeva, I. Mitov, T. Tabakova, V. Mitrov, A. Andreev, Influence of iron(II) on the transformation of ferrihydrite into goethite in acid medium, Mater. Chem. Phys. 41 (1995) 146-149.
DOI: 10.1016/0254-0584(95)01520-5
Google Scholar
[17]
H. Wu, P. Yuan, H. Xu, Y. Cao, X. Wei, Controllable synthesis and magnetic properties of Fe-Co alloy nanoparticles attached on carbon nanotubes, J. Mater. Sci. 41 (2006) 6889-6894.
DOI: 10.1007/s10853-006-0935-5
Google Scholar