Characterization of ZrO2/PZT Nanocomposites Ceramics Prepared by the Citrate Precursor Route

Article Preview

Abstract:

Lead zirconate titanate (PZT)-based nanocomposites embedded with ZrO2 nanoparticles were fabricated by citrate precursor route from metastable phases in situ. The effect of ZrO2 content on mechanical and piezoelectric properties of composites was investigated. m-ZrO2 particles covering 30-70 nm are dispersed homogenously inside the PZT matrix grain with stress strips around m-ZrO2 nanoparticles. The fracture mode changes from intergranular to intragranular with increasing the amount of ZrO2. Transformation toughening and nanoparticle dispersion toughening of ZrO2 contributed to the reinforcement of the PZT/ZrO2 nanocomposites. It is exciting to found that the mechanical properties as well as the piezoelectric properties were both increased compared with those of monolithic PZT when add a certain amount of ZrO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-410

Citation:

Online since:

April 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tajima, H. J. Hwang, M. Sando and K. Niihara, PZT nanocomposites reinforced by small amount of oxides, J. Euro. Ceram. Soc. 19(1999)1179-1182.

DOI: 10.1016/s0955-2219(98)00399-9

Google Scholar

[2] K. Niihara, New design concept of structural ceramics nanocomosites, J. Ceram. Soc. Jpn. 99(1990)974-982.

Google Scholar

[3] M. Nawa, K. Yamazaki, T. Sekino, K. Niihara, Microstructure and mechanical behavior of 3Y-TZP/Mo nanocomposites processing a novel interpenetrated intragranular microstructure, J. Mater. Sci. 31(1996)2849–2858.

DOI: 10.1007/bf00355992

Google Scholar

[4] M. Nawa, Development of High Performance Oxide Based Ceramic Materials with New Nanocomposite Structure, Thesis, Osaka University. 1998, p.37.

Google Scholar

[5] T. Sekino, K. Niihara, Fabrication and mechanical properties of fine-tungsten-dispersed alumina-based composites, J. Mater. Sci. 32(1997)3943–3949.

Google Scholar

[6] T. Kosmac, M. V. Swain and N. Claussen, the Role of Tetragonal and Monoclinic ZrO2 Particles in the Fracture Toughness of Al2O3-ZrO2 Composites. J. Mat. Sci. Eng. 71(1985)57.

DOI: 10.1016/0025-5416(85)90206-x

Google Scholar

[7] Q.M. Yuan, J.Q. Tan and Z.G. Jin, Preparation and Properties of Zirconia-toughened Mullite Ceramics. J. Am. Ceram. Soc. 69(1986)265–267.

DOI: 10.1111/j.1151-2916.1986.tb07422.x

Google Scholar

[8] Y.G. Wu, B. Wang, Z. b. Cong, B. Wang, Preparation of Pb(Zr1/2Ti1/2)O3-Pb(Mg1/3Nb2/3)O3 Piezoelectric Ceramics by Dry-dry Method, J. Mater. Sci. 42(2007)221-227.

DOI: 10.1007/s10853-006-1055-y

Google Scholar

[9] A. Bianco, M. Paci, and R. Freer, Zirconium titanate: from polymeric precursors to bulk ceramics, J. Euro. Ceram. Soc. 18, (1998)1235-1243.

DOI: 10.1016/s0955-2219(98)00048-x

Google Scholar

[10] A. D. Polli, F. F. Lange, C. G. Levi, Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO-ZrO2-TiO2 System. J. Am. Ceram. Soc. 83(2000), 73-81.

DOI: 10.1111/j.1151-2916.2000.tb01288.x

Google Scholar

[11] E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase diagram for Ceramist 1975 supplement, Ed. By M. K. Reser, Columbus, Ohio, American ceramic society, 1975, Fig4588.

Google Scholar