Progress on Preparation of InAs Nanowires by Molecular Beam Epitaxy

Article Preview

Abstract:

InAs nanowires (NWs) is a key material for high-speed electronics, near-and mid-infrared light emission and detection applications. Much effort has been devoted to the fabrication of InAs NWs and molecular beam epitaxy (MBE) evolved as a powerful method to grow semiconductor nanowires with several interesting features, but it was rarely reported. We present kinds of growths (metal-catalyzed growth, self-catalyzed growth, self-induced free-standing growth, self-induced position-controlled growth, self-assisted nucleation growth etc.) of InAs NWs by MBE, and discuss how to control growth of uniform-structure InAs NWs on homogeneous or heterogeneous substrates, which can provide the reference for the manufacture of low dimensional structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-355

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L-W Chou, N Shin, S V Sivaram, et al: J. Journal of the American Chemical Society. 134(2012)16155-16158.

Google Scholar

[2] Y Ma, X Guo, X Wu, et al: J. Advances in Optics and Photonics. 5(2013)216-273.

Google Scholar

[3] C Thelander, T Mårtensson, M Björk, et al: J. Applied Physics Letters. 83(2003)2052-(2054).

Google Scholar

[4] M Björk, B Ohlsson, C Thelander, et al: J. Applied Physics Letters. 81(2002)4458-4460.

Google Scholar

[5] S Chuang, Q Gao, R Kapadia, et al: J. Nano letters. 13(2013)555-558.

Google Scholar

[6] M D Schroer, J R Petta: J. Nano Lett. 10(2010)1618-22.

Google Scholar

[7] H J Joyce, J Wong-Leung, Q Gao, et al: J. Nano Lett. 10(2010)908-15.

Google Scholar

[8] K A Dick, K Deppert, T Mårtensson, et al: J. Nano letters. 5(2005)761-764.

Google Scholar

[9] Nakamura M, Fujioka H, Ono K, et al: J. Journal of crystal growth. 209(2000) 232-236.

Google Scholar

[10] Wagner R S, Ellis W C: J. Applied Physics Letters. 4(1964) 89-90.

Google Scholar

[11] M Tchernycheva, L Travers, G Patriarche, et al: J. Journal of Applied Physics. 102(2007)094313.

Google Scholar

[12] D Pan, M Fu, X Yu, et al: J. Nano Lett. 14(2014)1214-1220.

Google Scholar

[13] S-G Ihn, J-I Song: J. Nanotechnology. 18(2007)355603.

Google Scholar

[14] G Cirlin, V Dubrovskii, I Soshnikov, et al: J. physica status solidi (RRL)-Rapid Research Letters. 3(2009)112-114.

Google Scholar

[15] K A Dick, C Thelander, L Samuelson, et al: J. Nano Lett. 10(2010)3494-9.

Google Scholar

[16] H Shtrikman, R Popovitz-Biro, A Kretinin, et al: J. Nano letters. 9(2009)1506-1510.

Google Scholar

[17] C Thelander, P Caroff, S Plissard, et al: J. Nano Lett. 11(2011)2424-9.

Google Scholar

[18] S Lehmann, J Wallentin, D Jacobsson, et al: J. Nano letters. 13(2013)4099-4105.

Google Scholar

[19] P Caroff, K A Dick, J Johansson, et al: J. Nature nanotechnology. 4(2009)50-55.

Google Scholar

[20] G Koblmüller, S Hertenberger, K Vizbaras, et al: J. Nanotechnology. 21(2010)365602.

Google Scholar

[21] S Hertenberger, D Rudolph, S Bolte, et al: J. Applied Physics Letters. 98(2011)123114.

Google Scholar

[22] S Hertenberger, D Rudolph, M Bichler, et al: J. Journal of Applied Physics. 108(2010)114316.

Google Scholar

[23] KTomioka, T Tanaka, S Hara, et al: J. Selected Topics in Quantum Electronics, IEEE Journal of. 17(2011)1112-1129.

Google Scholar

[24] B Mandl, J Stangl, E Hilner, et al: J. Nano Lett. 10(2010)4443-9.

Google Scholar

[25] E Dimakis, J Lähnemann, U Jahn, et al: J. Crystal Growth & Design. 11(92011)4001-4008.

Google Scholar