Low-Cost Preparation of Graphene Quantum Dots by Liquid-Phase Exfoliation of Carbon Fibers

Article Preview

Abstract:

Graphene quantum dots, a kind of advanced carbon material, have become the frontier of condensed matter physics and material science. Here, we develop a plain and cheap preparation of graphene quantum dots by liquid-phase exfoliation of carbon fibers, which were prepared from absorbent cotton through an annealing process at 1000°C. The structure, micro morphology, chemical bond and optical properties of the as-prepared graphene quantum dots were characterized. Results show that the as-prepared graphene quantum dots present a green luminescence and have a narrow size distribution of 3-10 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

489-495

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu: An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics,. Adv. Mater., 2011, 23, 776-780.

DOI: 10.1002/adma.201003819

Google Scholar

[2] D. Pan, J. Zhang, Z. Li and M. Wu: Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots,. Adv. Mater., 2010, 22, 734-738.

DOI: 10.1002/adma.200902825

Google Scholar

[3] M. L. Mueller, X. Yan, J. A. McGuire and L. S. Li: Triplet States and Electronic Relaxation in Photoexcited Graphene Quantum Dots,. Nano Lett., 2010, 10, 2679-2682.

DOI: 10.1021/nl101474d

Google Scholar

[4] R. Liu, D. Wu, X. Feng and K. Mullen: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology,. J. Am. Chem. Soc., 2011, 133, 15221-15223.

DOI: 10.1021/ja204953k

Google Scholar

[5] V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj and S. Chand: Luminscent graphene quantum dots for organic photovoltaic devices,. J. Am. Chem. Soc., 2011, 133, 9960-9963.

DOI: 10.1021/ja2036749

Google Scholar

[6] K. A. Ritter and J. W. Lyding: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,. Nature materials, 2009, 8, 235-242.

DOI: 10.1038/nmat2378

Google Scholar

[7] S. N. Baker and G. A. Baker: Luminescent carbon nanodots: emergent nanolights,. Angew. Chem. Int. Ed. Engl., 2010, 49, 6726-6744.

DOI: 10.1002/anie.200906623

Google Scholar

[8] L. B. Tang, R. B. Ji, X. Li, K. S. Teng and S. P. Lau: Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots,. Particle & Particle Systems Characterization, 2013, 30, 523-531.

DOI: 10.1002/ppsc.201200131

Google Scholar

[9] M. Xie, Y. Su, X. Lu, Y. Zhang, Z. Yang and Y. Zhang: Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers,. Mater. Lett., 2013, 93, 161-164.

DOI: 10.1016/j.matlet.2012.11.029

Google Scholar

[10] J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu and P. M. Ajayan: Graphene quantum dots derived from carbon fibers,. Nano Lett., 2012, 12, 844-849.

DOI: 10.1021/nl2038979

Google Scholar

[11] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov and A. K. Geim: Chaotic Dirac billiard in graphene quantum dots,. Science, 2008, 320, 356-358.

DOI: 10.1126/science.1154663

Google Scholar

[12] X. L. Liu, D. Hug and L. M. Vandersypen: Gate-defined graphene double quantum dot and excited state spectroscopy,. Nano Lett., 2010, 10, 1623-1627.

DOI: 10.1021/nl9040912

Google Scholar

[13] J. H. Shen, Y. H. Zhu, X. L. Yang, J. M. Zong, J. Zhang and C. Z. Li: One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light,. New J. Chem., 2012, 36, 97-101.

DOI: 10.1039/c1nj20658c

Google Scholar

[14] D. B. Shinde and V. K. Pillai: Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes,. Chemistry (Easton), 2012, 18, 12522-12528.

DOI: 10.1002/chem.201201043

Google Scholar

[15] L. Lin and S. Zhang: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes,. Chem. Commun. (Camb. ), 2012, 48, 10177-10179.

DOI: 10.1039/c2cc35559k

Google Scholar

[16] Z. Zhang, K. Chang and F. Peeters: Tuning of energy levels and optical properties of graphene quantum dots,. Physical Review B, 2008, 77, 235411.

DOI: 10.1103/physrevb.77.235411

Google Scholar

[17] B. Trauzettel, D. V. Bulaev, D. Loss and G. Burkard: Spin qubits in graphene quantum dots,. Nature Physics, 2007, 3, 192-196.

DOI: 10.1038/nphys544

Google Scholar

[18] J. M. Pereira, P. Vasilopoulos and F. Peeters: Tunable quantum dots in bilayer graphene,. Nano Lett., 2007, 7, 946-949.

DOI: 10.1021/nl062967s

Google Scholar

[19] X. Yan, X. Cui, B. Li and L. S. Li: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,. Nano Lett., 2010, 10, 1869-1873.

DOI: 10.1021/nl101060h

Google Scholar

[20] J. Shen, Y. Zhu, X. Yang and C. Li: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,. Chem. Commun. (Camb. ), 2012, 48, 3686-3699.

DOI: 10.1039/c2cc00110a

Google Scholar

[21] J. Zhao, G. Chen, L. Zhu and G. Li: Graphene quantum dots-based platform for the fabrication of electrochemical biosensors,. Electrochem. Commun., 2011, 13, 31-33.

DOI: 10.1016/j.elecom.2010.11.005

Google Scholar

[22] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun and B. Yang: Strongly green-photoluminescent graphene quantum dots for bioimaging applications,. Chem. Commun. (Camb. ), 2011, 47, 6858-6860.

DOI: 10.1039/c1cc11122a

Google Scholar

[23] J. Wu, Z. Tomovic, V. Enkelmann and K. Müllen: From branched hydrocarbon propellers to C 3-symmetric graphite disks,. The Journal of organic chemistry, 2004, 69, 5179-5186.

DOI: 10.1021/jo049452a

Google Scholar

[24] X. Yan, X. Cui and L. S. Li: Synthesis of large, stable colloidal graphene quantum dots with tunable size,. J. Am. Chem. Soc., 2010, 132, 5944-5945.

DOI: 10.1021/ja1009376

Google Scholar

[25] R. Sekiya, Y. Uemura, H. Murakami and T. Haino: White-light-emitting edge-functionalized graphene quantum dots,. Angew. Chem. Int. Ed. Engl., 2014, 53, 5619-5623.

DOI: 10.1002/anie.201311248

Google Scholar

[26] L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai: Narrow graphene nanoribbons from carbon nanotubes,. Nature, 2009, 458, 877-880.

DOI: 10.1038/nature07919

Google Scholar

[27] J. Kim and J. S. Suh: Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet,. ACS nano, 2014, 8, 4190-4196.

DOI: 10.1021/nn404180w

Google Scholar

[28] W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen and Q. J. Xue: Superior Micro-Supercapacitors Based on Graphene Quantum Dots,. Adv. Funct. Mater., 2013, 23, 4111-4122.

DOI: 10.1002/adfm.201203771

Google Scholar

[29] S. Benítez-Martínez and M. Valcárcel: Graphene quantum dots as sensor for phenols in olive oil,. Sensors Actuators B: Chem., 2014, 197, 350-357.

DOI: 10.1016/j.snb.2014.03.008

Google Scholar

[30] X. M. Li, S. P. Lau, L. B. Tang, R. B. Ji and P. Z. Yang: Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots,. Nanoscale, 2014, 6, 5323-5328.

DOI: 10.1039/c4nr00693c

Google Scholar