Improved Dehydriding Properties of NaMgH3 Perovskite Hydride by Addition of Graphitic Carbon Nitride

Article Preview

Abstract:

NaMgH3 perovskite hydride and graphitic carbon nitride (g-C3N4) powder with multi-layer structure have been synthesized by high-energy ball-milling and heating-decomposition method respectively. In comparison with pristine NaMgH3 hydride, the as–milled NaMgH3+5wt.% g-C3N4 (NMH-5CN) composite presents better dehydriding kinetic properties and lower onset decomposition temperature. The onset decomposition temperature of NMH-5CN composite can be decreased about 87K, the hydrogen-desorbed amount is about 3.2 wt. % within 40min, and 1.4 wt. % within 10min at 638K, and the Kissinger analysis demonstrated that the activation energy (ΔE) of the first and second dehydrogenation step for NMH-5CN can be reduced about 40 kJ mol-1 and 22.4 kJ mol-1, respectively. The results suggest that g-C3N4 is an effective catalyst for the improvement of dehydriding properties of NaMgH3 perovskite hydride.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

502-508

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Schlapbach, A. Zűttel: Nature Vol. 414 (2001), p.353.

Google Scholar

[2] JA. Ritter, AD. Ebner, J. Wang and R. Zidan: Mater Today Vol. 6 (2003), p.18.

Google Scholar

[3] D. Pottmaier, ER. Pinatel, JG. Vitillo, S. Garroni, M. Orlova, MD. Baro, et al. Chem. Mater Vol. 23 (2011), p.2317.

Google Scholar

[4] Y. Bouhadda, N. Fenineche and Y. Boudouma: Physica B Vol. 406 (2011), p.1000.

Google Scholar

[5] Y. Bouhadda, Y. Boudouma, N. Fenineche and A. Bentabet: J Phys Chem Solids Vol. 71 (2010), p.1264.

Google Scholar

[6] H. Wu, W. Zhou, TJ. Udovic, JJ. Rush and T. Yildirim: Chem Mater Vol. 20 (2008), No. 6, p.2335.

Google Scholar

[7] Y. Bouhadda, M. Bououdina, N. Fenineche and Y. Boudouma: Int J Hydrogen Energy Vol. 38 (2013), p.1484.

DOI: 10.1016/j.ijhydene.2012.11.047

Google Scholar

[8] A. Zaluska, L. Zaluski and J.O. Ström-Olsen: J. Alloys Compd Vol. 307 (2000), p.157.

Google Scholar

[9] F. Gingl, T. Vogt, E. Akiba and K. Yvon: J. Alloys Compd Vol. 282 (1999), p.125.

Google Scholar

[10] B. Bertheville, T. Herrmannsdörfer and K. Yvon: J. Alloys Compd Vol. 325 (2001), p. L13.

Google Scholar

[11] A. Bouamrane, J. P. Laval, J.P. Soulie and J.P. Bastide: Mater. Res. Bull Vol. 35 (2000), p.545.

Google Scholar

[12] D.A. Sheppard, M. Paskevicius and C.E. Buckley: Chem. Mater Vol. 23 (2011), p.4298.

Google Scholar

[13] Y. Li, L. Zhang, Q. Zhang, F. Fang, D. Sun, K. Li, H. Wang, L. Ouyang, M. Zhu: J. Phys. Chem. C Vol. 118 (2014), p.23635.

Google Scholar

[14] A. L. Chaudhary, M. Paskevicius, D. A. Sheppard, C. E. Buckley: J. Alloys Compd Vol. 623 (2015), p.109.

Google Scholar

[15] Q. Li, Y. He and R. Peng: RSC Adv Vol. 5 (2015), p.24507.

Google Scholar

[16] Y. J. Cui, Z. X. Ding, X. Z. Fu and X. C. Wang: Angew. Chem. Int. Ed Vol. 51 (2012), p.11814.

Google Scholar

[17] X. She,H. Xu, Y. Xu, J. Yan,J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang and H. Li: J. Mater. Chem. A Vol. 00 (2013), p.1.

Google Scholar

[18] K. Maeda, X. C. Wang, Y. Nishihara, D. L. Lu, M. Antonietti and K. Domen: J. Phys. Chem. C Vol. 113 (2009), p.4940.

Google Scholar

[19] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Dxmen and M. Antonietti: Nat. Mater Vol. 8 (2009), p.76.

Google Scholar

[20] L. Zhang, D.W. Jing, X. L. She, H.W. Liu, D. J. Yang, Y. Lu, J. Li, Z. F. Zheng and L. J. Guo: J. Mater. Chem. A Vol. 2 (2014), p. (2071).

Google Scholar

[21] X. C. Wang, X. F. Chen, A. Thomas and X. Z. Fu: Adv. Mater Vol. 21 (2009), p.1609.

Google Scholar

[22] J. Zhang,B. Wang and X. Wang: Preg. Chem. Vol. 26 (2014), p.19.

Google Scholar

[23] X. H. Wang, S. Blechert and M. Antonietti: ACS Catal Vol. 2 (2012), p.1596.

Google Scholar

[24] J. KOUVETAKIS, A. BANDARI, M. TODD, B. WILKENS and N. CAVE: Chem. Mater Vol. 6 (1994), p.811.

Google Scholar

[25] K. Wang, X. Kang, Y. Zhong, C. Hu, P. Wang: Int J Hydrogen Energy Vol. 39 (2014), p.13369.

Google Scholar

[26] Y. Cui, Z. Ding,X. Fu and X. Wang: Angew. Chem. -Int. Edit Vol. 51 (2012), p.11814.

Google Scholar

[27] E. RÖnnebro, D. Noréus, K. Kadir, A. Reiser and B. Bogdanovic: J. Alloys Compd Vol. 299 (2000), p.101.

Google Scholar

[28] A. Bouamranea, J.P. Laval, J.P. Soulie, J. P. Bastide: Mater Res Bull Vol. 35 (2000), p.545.

Google Scholar

[29] R. Martínez-Coronado, J. M. Sánchez-Benítez, M. T. Retuerto, J. Fernández-Díaz and A. Alonso: J. Alloys Compd Vol: 522 (2012), p.101.

DOI: 10.1016/j.jallcom.2012.01.097

Google Scholar