Preparation and Photoluminescence Properties of Green-Emitting LiYb1-xTbx(MoO4)2(x = 0.01-1) Phosphors

Article Preview

Abstract:

s. Tb3+-doped LiYb1-xTbx(MoO4)2 (x = 0.01-1) solid solutions were prepared by solid state reaction. Structural of the solid solution series was carried out by X-ray powder diffraction. By increasing the Tb3+concentration, the XRD results reveal that LiYb1-xTbx(MoO4)2 adopt a tetragonal structure with space group of I4(No. 82) and transfer to tetragonal structurewith space group of P41/a (No.88) systemically. The emission and excitation spectra were employed to characterize the synthesized phosphors. Theexcitation spectra showed that LiYb1-xTbx(MoO4)2 can be efficiently excited by the lights of 250-500 nm, which well match with the emission wavelength of near-UV and blue LEDs chips. The phosphor showed bright green luminescence peaking at around 545 nm under the excitation at 266 nm and 490 nm.The Luminescence intensities are investigated under different Tb3+ concentrations. The luminescence decay and the color coordinates were also discussed in order to further investigate the potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-501

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Tosaka and S. Adachi: J. Lumi., 2014, 156, 157-163.

Google Scholar

[2] C. Cascales, A. M. Blas, M. Rico, V. Volkov and C. Zaldo: Opt. Mater., 2005, 27, 1672-1680.

Google Scholar

[3] Z. Wang, P. Li, Z. Yang, Q. Guo and G. Dong: Ceram. Int., 2014, 40, 15283-15292.

Google Scholar

[4] H. Yamanoto, S. Seki and T. Ishiba: J. Solid State Chem., 1991, 94, 396-403.

Google Scholar

[5] J. R. de Moraes, S. L. Baldochi, L. dos R. L. Soares, V. L. Mazzocchi, C. B. R. Parente and L. C. Courrol: Mater. Res. Bull., 2012, 47, 744-749.

Google Scholar

[6] U. Fawad, Myeongjin Oh, H. Park, Sunghwan Kim and H.J. Kim: J. Alloys Compd., 2014, 610, 281-287.

Google Scholar

[7] C. Jin, H. Ma, Y. Liu, Q. Liu, G. Dong and Q. Yu: J. Alloys Compd., 2014, 613, 275-279.

Google Scholar

[8] Z. Yang, Y. Hu, L. Chen and X. Wang: J. Alloys Compd., 2014, 153, 412-416.

Google Scholar

[9] X. Zhang, P. He, L. Zhou, J. Shi, M. Gong: Mater. Res. Bull., 2014, 60, 300-307.

Google Scholar

[10] X. Zhang, Z. Zhang andH.J. Seo: J. Alloys Compd., 2011, 509, 4875-4877.

Google Scholar

[11] M. Shang, G. Li, X. Kang, D. Yang and J. Lin: J. Electrochem. Soc., 2011, 158, H565-H571.

Google Scholar

[12] X. Qiaoand H.J. Seo: J. Alloys Compd., 2013, 578, 188-194.

Google Scholar

[13] D. Wei, Y. Huang, S. Kim, Y. Yu and H.J. Seo: Mater. Lett., 2013, 99, 122-124.

Google Scholar

[14] D. Chikte, S.K. Omanwarand S.V. Moharil: J. Lumin., 2014, 145, 729-732.

Google Scholar

[15] W.B. Bu, Z.X. Chen, F. Chen and J.L. Shi: J. Phys. Chem. C, 2009, 113, 12176-12185.

Google Scholar

[16] A.A. Kaminskii, J.B. Gruber, S.N. Bagaev, K.O. Ueda, U. Hommerich, J.T. Seo, D. Temple, A.A. Kornienko and E.B. Dunina: Phys. Rev. B, 2002, 65 125108.

Google Scholar

[17] L.H. Yi, X.P. He, L.Y. Zhou, F.Z. Gong, R.F. Wang and J.H. Sun: J. Lumin., 2010, 130, 1113-1117.

Google Scholar

[18] H. Bih, L. Bih, B. Manoun, M. Azrour, S. Benmokhtar and P. Lazor: J. Mol. Struct., 2010, 965, 7-13.

DOI: 10.1016/j.molstruc.2009.11.020

Google Scholar

[19] W.M. Yen, S. Shionoya and H. Yamamoto: CRC Press, NewYork, (2006).

Google Scholar