Using Localized Impedance Spectroscopy to Study the Effect of Loading Potential Variation on DMFC Anode Performance

Article Preview

Abstract:

By localized impedance spectroscopy (LEIS) and electrochemical impedance spectroscopy (EIS), the effect of loading potential variation on the performance of direct methanol fuel cell ( DMFC ) anode was studied. During surface scanning, the local impedance of the anode showed sawtooth-like distribution under potential loading, which meant the electrochemical activity in the anode surface was nonuniform. Meanwhile, the local impedance tended to increase with loading potential increasing. After loading 16h and 72h at 0.6V, the average size of catalysts changed from 3.4nm to 3.6nm and 4.4nm, increased by 5.88% and 29.41%. After loaded for 72h under 0.8V, the ratio of Pt:Ru in catalyst changes from 2:1 to 3.9:1. It is the change of the difference in local area, which showed impedance increase, catalyst particle size growing up and agglomeration, the loss of Ru, that contributed to the performance decay of DMFC anode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

785-791

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kuan YD, Lee SM, Sung MF. Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors. Energies. 2014; 7: 3136-47.

DOI: 10.3390/en7053136

Google Scholar

[2] Mitzel J, Arena F, Walter T, Stefener M, Hempelmann R. Direct Methanol Fuel Cell - Alternative Materials and Catalyst Preparation. Z Phys Chem. 2013; 227: 497-540.

DOI: 10.1524/zpch.2013.0341

Google Scholar

[3] Falcao DS, Oliveira VB, Rangel CM, Pinto AMFR. Review on micro-direct methanol fuel cells. Renew Sust Energ Rev. 2014; 34: 58-70.

Google Scholar

[4] Chen WM, Sun GQ, Guo JS, Zhao XS, Yan SY, Tian J, et al. Test on the degradation of direct methanol fuel cell. Electrochim Acta. 2006; 51: 2391-9.

DOI: 10.1016/j.electacta.2005.07.016

Google Scholar

[5] Sarma LS, Chen CH, Wang GR, Hsueh KL, Huang CP, Sheu HS, et al. Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources. 2007; 167: 358-65.

DOI: 10.1016/j.jpowsour.2007.02.020

Google Scholar

[6] Kumar P, Dutta K, Das S, Kundu PP. An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energ Res. 2014; 38: 1367-90.

DOI: 10.1002/er.3163

Google Scholar

[7] Kimiaie N, Wedlich K, Hehemann M, Lambertz R, Muller M, Korte C, et al. Results of a 20 000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system - degradation of the DMFC stack and the energy storage. Energ Environ Sci. 2014; 7: 3013-25.

DOI: 10.1039/c4ee00749b

Google Scholar

[8] Kim JH, Yang MJ, Park JY. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly. Appl Energ. 2014; 115: 95-102.

DOI: 10.1016/j.apenergy.2013.10.056

Google Scholar

[9] Kang K, Park S, Gwak G, Jo A, Kim M, Lim YD, et al. Effect of variation of hydrophobicity of anode diffusion media along the through-plane direction in direct methanol fuel cells. Int J Hydrogen Energ. 2014; 39: 1564-70.

DOI: 10.1016/j.ijhydene.2013.04.112

Google Scholar

[10] Ju JF, Chen X, Shi YJ, Wu DH, Hua P. Novel spherical TiO2 supported PdNi alloy catalyst for methanol electroxidation. J Ind Eng Chem. 2014; 20: 1223-6.

DOI: 10.1016/j.jiec.2013.07.045

Google Scholar

[11] Joghee P, Pylypenko S, Wood K, Bender G, O'Hayre R. High-Performance Alkaline Direct Methanol Fuel Cell using a Nitrogen-Postdoped Anode. Chemsuschem. 2014; 7: 1854-7.

DOI: 10.1002/cssc.201400158

Google Scholar

[12] Iannaci A, Mecheri B, D'Epifanio A, Licoccia S. Sulfated zirconium oxide as electrode and electrolyte additive for direct methanol fuel cell applications. Int J Hydrogen Energ. 2014; 39: 11241-9.

DOI: 10.1016/j.ijhydene.2014.05.121

Google Scholar

[13] Gu CD, Huang ML, Ge X, Zheng H, Wang XL, Tu JP. NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate. Int J Hydrogen Energ. 2014; 39: 10892-901.

DOI: 10.1016/j.ijhydene.2014.05.028

Google Scholar

[14] Schwamborn S, Stoica L, Chen XX, Xia W, Kundu S, Muhler M, et al. Patterned CNT Arrays for the Evaluation of Oxygen Reduction Activity by SECM. Chemphyschem. 2010; 11: 74-8.

DOI: 10.1002/cphc.200900744

Google Scholar

[15] Okunola AO, Nagaiah TC, Chen XX, Eckhard K, Schuhmann W, Bron M. Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta. 2009; 54: 4971-8.

DOI: 10.1016/j.electacta.2009.02.047

Google Scholar

[16] Brett DJL, Atkins S, Brandon NP, Vesovic V, Vasileiadis N, Kucernak A. Localized impedance measurements along a single channel of a solid polymer fuel cell. Electrochem Solid St. 2003; 6: A63-A6.

DOI: 10.1149/1.1557034

Google Scholar

[17] Brett DJL, Atkins S, Brandon NP, Vesovic V, Vasileiadis N, Kucernak A. Localised electrochemical impedance measurements on a single channel of a solid polymer fuel cell. Elec Soc S. 2005; 2002: 336-48.

DOI: 10.1149/1.1557034

Google Scholar

[18] Eckhard K, Schuhmann W. Localised visualisation of O-2 consumption and H2O2 formation by means of SECM for the characterisation of fuel cell catalyst activity. Electrochim Acta. 2007; 53: 1164-9.

DOI: 10.1016/j.electacta.2007.02.028

Google Scholar

[19] Capitanio F, Siracusano S, Stassi A, Baglio V, Arico AS, Tavares AC. AC impedance spectroscopy investigation of carbon supported Pt3Co and Pt cathode catalysts in direct methanol fuel cell. Int J Hydrogen Energ. 2014; 39: 8026-33.

DOI: 10.1016/j.ijhydene.2014.03.080

Google Scholar

[20] Gao HL, Liao SJ, Zeng JH, Liang ZX, Xie YC. Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance. Acta Phys-Chim Sin. 2010; 26: 3193-8.

Google Scholar

[21] Nordlund J, Lindbergh G. Temperature-dependent kinetics of the anode in the DMFC. J Electrochem Soc. 2004; 151: A1357-A62.

DOI: 10.1149/1.1773580

Google Scholar

[22] Wang ZB, Li CZ, Gu DM, Yin GP. Carbon riveted PtRu/C catalyst from glucose in-situ carbonization through hydrothermal method for direct methanol fuel cell. J Power Sources. 2013; 238: 283-9.

DOI: 10.1016/j.jpowsour.2013.03.082

Google Scholar

[23] Jung S, Leng Y, Wang CY. Role of CO2 in Methanol and Water Transport in Direct Methanol Fuel Cells. Electrochim Acta. 2014; 134: 35-48.

DOI: 10.1016/j.electacta.2014.04.087

Google Scholar

[24] Guo L, Chen SG, Li L, Wei ZD. A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction. J Power Sources. 2014; 247: 360-4.

DOI: 10.1016/j.jpowsour.2013.08.102

Google Scholar

[25] Sugimoto W, Aoyama K, Kawaguchi T, Murakami Y, Takasu Y. Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry. J Electroanal Chem. 2005; 576: 215-21.

DOI: 10.1016/j.jelechem.2004.10.018

Google Scholar