The Chloride Annealing for Back Contact Layer Free CdTe Solar Cells

Article Preview

Abstract:

The large area CdTe thin film samples were used for chloride annealing. The CuCl2/NH4Cl solution was attached on the CdTe surface. After annealing treatment, the CdTe solar cells were prepared. The structure of the thin films and the properties of the CdTe solar cells were tested for studying the effect of the ratio of Cu/Cl, solution concentration and the annealing temperature. At last the performance of CuCl2/NH4Cl annealing cells, ZnTe back contact cells and C:Te,Cu back contact cells were compared. Without back contact layers the efficiency of the CdTe solar cells reached 11.13% with chloride annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

799-804

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Danos, T. Parel, T. Markvart, and et al.: Solar Energy Materials & Solar Cells 98 (2012): 486-490.

DOI: 10.1016/j.solmat.2011.11.009

Google Scholar

[2] M. A. Green, K. Emery, Y. Hishikawa, and et al. : Solar Cell Efficiency Tables (version42), Progress in Photovoltaics: Research and Applications 21 (2013): 827–837.

DOI: 10.1002/pip.2404

Google Scholar

[3] M. Gloeckler, I. Sankin, and Z. Zhao: IEEE J. Photovoltaics, 3 (2013): 1389-1393.

Google Scholar

[4] Nicolae Spalatu, Jaan Hiie, Vello Valdna, and et al: Energy Procedia 44 (2014): 85-95.

Google Scholar

[5] Jae Ho Yun, Eun Seok Cha, Byung Tae Ahn, and et al. : Current Applied Physics 14 (2014): 630-635.

Google Scholar

[6] M. J. Kim, J. J. Lee, S. H. Lee, S. H. Sohn: Solar Energy Materials & Solar Cells 109 (2013): 209-214.

Google Scholar

[7] M. A. Islam, M. S. Hossain, M. M. Aliyu, and etl. : Thin Solid Films 546 (2013): 367-374.

Google Scholar

[8] S. H. Demtsu, and J. R. Sites: Thin Solid Films 510 (2006): 320-324.

Google Scholar

[9] A. L. Fahrenbruch: Solar Cells, 21 (1987): 399-412.

Google Scholar

[10] C.R. Corwine, A.O. Pudov, M. Gloeckler, and et al: Solar Energy Materials & Solar Cells 82 (2004): 481-489.

Google Scholar

[11] X. Wu, J. Zhou, A. Duda, and et al. : Thin Solid Films 515 (2007): 5798–5803.

Google Scholar

[12] J. L. Pena, O. Ares, V. Rejon, and et al. : Thin Solid Films 520 (2011): 680-683.

Google Scholar

[13] D. Grecu, A. D. Compaan, D. Young, and et al. : J. Appl. Phys. 88 (2000): 2490–2496.

Google Scholar

[14] Steven S. Hegedus, and Brian E: Solar Energy Materials & Solar Cells 88 (2005): 75-95.

Google Scholar

[15] Wenwu Wang, Jiagui Zheng, Lianghuan Feng, and et. al: Journal of Zhengzhou University (Engineering Sience) 30 (2009): 120-128.

Google Scholar

[16] M. J. Kim, J. J. Lee, S. H. Lee, and S. H. Sohn: Solar Energy Materials & Solar Cells 109 (2013): 209-214.

Google Scholar

[17] Yaoming Sun, Jingquan Zhang, Zhi Lei, and et. al: Journal of Functional Materials 40 (2009): 86-88.

Google Scholar

[18] Anke Abken, Photovoltaic Device Including Controlled Copper Uptake, U.S. Patent US: 20100212731 A1, 2010-8-26.

Google Scholar

[19] MaengJun Kim, SangHo Sohn, and DungHo Lee: Solar Energy & Solar Cells 95 (2011): 2295-2301.

Google Scholar