[1]
B.L. Ellis, K.T. Lee, L.F. Nazar. Positive electrode materials for Li-ion and Li-Batteries. Chem. Mater., 2010, 22: 691-714.
DOI: 10.1021/cm902696j
Google Scholar
[2]
H.J. Yu, H.S. Zhou. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett., 2013, 4: 1268-1280.
Google Scholar
[3]
Sun Y K, Han J M, Myung S T, et al. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochemistry Communications, 2006, 8: 821-826.
DOI: 10.1016/j.elecom.2006.03.040
Google Scholar
[4]
Hu M, Pang X L, Zhou Z. Recent progress in high-voltage lithium ion batteries. Journal of Power Sources, 2013, 237: 229-242.
DOI: 10.1016/j.jpowsour.2013.03.024
Google Scholar
[5]
SaidiM Y, Barker J, Koksbang R. Structural and electrochemical investigation of lithium insertion in the Li1-xMn2O4 spinel phase. Electochimica Acta, 1996, 41: 199-204.
DOI: 10.1016/0013-4686(95)00311-2
Google Scholar
[6]
Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganese spinels. Materials Research Bulletin, 1983, 18(4): 461-472.
DOI: 10.1016/0025-5408(83)90138-1
Google Scholar
[7]
Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society, 2001, 148(3): A224-A229.
DOI: 10.1149/1.1348257
Google Scholar
[8]
Gao J, Manthiram A. High capacity Li(Li0. 2Mn0. 54Ni0. 13Co0. 13)O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochemical Communications, 2009, 11: 84-86.
DOI: 10.1016/j.elecom.2008.10.036
Google Scholar
[9]
M.M. Thackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17: 3112-3125.
DOI: 10.1039/b702425h
Google Scholar
[10]
P. He, H.J. Yu, D. Li, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem., 2012, 22: 3680-3695.
DOI: 10.1039/c2jm14305d
Google Scholar
[11]
Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li(Li0. 2Mn0. 54Ni0. 13Co0. 13)O2 cathode by blending with other lithium insertion hosts. Journal of Power Sources, 2009, 191: 644-647.
DOI: 10.1016/j.jpowsour.2009.02.005
Google Scholar
[12]
Jeonga S K, Shina J S, Nahma K S, et al. Electrochemical studies on cathode blends of LiMn2O4 and Li(Li1/15Ni1/5Co2/5Mn1/3)O2. Materials Chemistry and Physics, 2008, 111: 213-217.
DOI: 10.1016/j.matchemphys.2008.03.032
Google Scholar
[13]
Satishkumar B C, Dawn M B, Liu L Y. A review of blended cathode materials for use in Li-ion batteries. Journal of Power Sources, 2014, 248: 91-100.
DOI: 10.1016/j.jpowsour.2013.09.052
Google Scholar
[14]
Hosono E, Kudo T, Honma I, et al. Synthesis of single crystallie spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Letters, 2009, 9 (3): 1045-1048.
DOI: 10.1021/nl803394v
Google Scholar
[15]
C.H. Zhao, X.X. Wang, X. L, Liu, et al. Mn-Ni content-dependent structures and electrochemical behaviors of series Li1. 2Ni0. 13+xCo0. 13Mn0. 54-xO2 as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces, 2014, 6: 2386-2392.
DOI: 10.1021/am404690z
Google Scholar