ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbonas Highly Efficient Supercapacitor Electrodes

Article Preview

Abstract:

A new 2D sandwich-like zeolitic imidazolate framework derived graphene-based N-doped porous carbons (GNPC) were prepared with the in situ growing ZIF-8 on grapheme oxide (GO), which exhibits well electrochemical properties with the present of GO and high nitrogen content. The specific capacitance of GNPC is 144 F g-1 in 6 M KOH at a current density of 0.1Ag-1, which was potential to be used as a supercapacitor electrode. The GNPC as promising nanomaterials will be suitable for practical applications in a range of fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

829-834

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.D. Mei, B. Zhang, R.C. Liu, Y.T. Zhang and J.D. Liu: Solar Energy Materials and Solar Cells, Vol. 95 (2011) No. 10, p.2772.

Google Scholar

[2] C.M. Jiao, B.H. Ji and D. Fang: Materials Letters, Vol. 67 (2012) No. 1, p.352.

Google Scholar

[3] Z.G. Zhang, N. Zhang, J. Peng, X.M. Fang, X.N. Gao and Y.T. Fang: Applied Energy, Vol. 91 (2012) No. 1, p.426.

Google Scholar

[4] S.K. Song, L.J. Dong, S. Chen, H.A. Xie, C.X. Xiong: Energy Conversion and Management, Vol. 81 (2014), p.306.

Google Scholar

[5] H. Chen, L.F. Hu, M. Chen, Y. Yan and L.M. Wu: Advanced Functional Materials, Vol. 24 (2014) No. 7, p.934.

Google Scholar

[6] Y.L. Gao, J.X. Wu, W. Zhang, Y.Y. Tan, J. Gao, J.C. Zhao and B.H.J. Tang: Journal of Solid State Electrochemistry, Vol. 18 (2014) No. 11, p.3203.

Google Scholar

[7] Y.L. Gao, J.X. Wu, W. Zhang, Y.Y. Tan, J.C. Zhao and B.H.J. Tang: Materials Letters, Vol. 128 (2014), p.208.

Google Scholar

[8] Y. Shi, L.J. Pan, B.R. Liu, Y.Q. Wang, Y. Cui, Z.A. Bao and G.H. Yu: Journal of Materials Chemistry A, Vol. 2 (2014) No. 17, p.6086.

Google Scholar

[9] X. Huang, B. Zheng, Z.D. Liu, C.L. Tan, J.Q. Liu, B. Chen, H. Li, J.Z. Chen, X. Zhang and Z.X. Fan: ACS nano, Vol. 8 (2014) No. 8, p.8695.

Google Scholar

[10] U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee and S.O. Kim: Advanced Materials, Vol. 26 (2014) No. 4, p.615.

Google Scholar

[11] Q. Zhang, K. Scrafford, M.T. Li, Z.Y. Cao, Z.H. Xia, P.M. Ajayan and B.Q. Wei: Nano Letters, Vol. 14 (2014) No. 4, p. (1938).

Google Scholar

[12] R. Kumar, K. Jayaramulu, T.K. Maji and C. Rao: Chemical Communications, Vol. 49 (2013) No. 43, p.4947.

Google Scholar

[13] Y. Yang, L. Ge, V. Rudolph and Z.H. Zhu: Dalton Transactions, Vol. 43 (2014) No. 19, p.7028.

Google Scholar

[14] P. Zhang, F. Sun, Z.G. Shen and D.P. Cao: Journal of Materials Chemistry A, Vol. 2 (2014) No. 32, p.12873.

Google Scholar

[15] H.X. Zhong, J. Wang, Y.W. Zhang, W.L. Xu, W. Xing, D. Xu, Y.F. Zhang and X.B. Zhang: Angewandte Chemie International Edition, Vol. 53 (2014) No. 51, p.14235.

Google Scholar

[16] Y.C. Pan, K, Y.Y. Liu G.F. Zeng, L. Z and Z.P. Lai: Chemical Communications, Vol. 47 (2011) No. 7, p. (2071).

Google Scholar

[17] Y.F. Tang, B.L. Allen, D.R. Kauffman and A. Star: Journal of the American Chemical Society, Vol. 131 (2009) No. 37, p.13200.

Google Scholar

[18] W. Yang, T.P. Fellinger and M. Antonietti: Journal of the American Chemical Society, Vol. 133 (2010) No. 2, p.206.

Google Scholar