Microwave Synthesis of MOFs/Graphene Oxide Composites and Hydrogen Storage Properties

Article Preview

Abstract:

Metal-organic frameworks (MOFs: copper containing CuBTC)-graphene oxide (GO) composite (CG) was synthesized using microwave heating. The parent material and the composite were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen sorption, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (HRTEM) and Raman spectroscopy. Then their hydrogen storage properties were systematically tested. The composite material CG shows a remarkable H2 capacity up to 2.43 wt% (28.6% increases vs. CuBTC) and higher surface area and pore volume compared to the neat CuBTC. And the particle size of CG is down to nanometer scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

835-840

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Long, O.M. Yaghi: Chemical Society Review, Vol. 38 (2009) No. 5, p.1213.

Google Scholar

[2] S.L. James: Chemical Society Review, Vol. 32 (2003) No. 5, p.276.

Google Scholar

[3] L.F. Song, J. Zhang, L.X. Sun, F. Xu, F. Li, H.Z. Zhang, X.L. Si, C.L. Jiao, Li Z.B., S. Liu: Energy& Environmental Science, Vol. 5 (2012) No. 6, p.7508.

Google Scholar

[4] S. Liu, L.X. Sun, F. Xu, J. Zhang, C.L. Jiao, F. Li, Z.B. Li, S. Wang, Z.Q. Wang, X. Jiang: Energy & Environmental Science, Vol. 6 (2013) No. 3, p.818.

Google Scholar

[5] X.L. Si, C.L. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z.B. Li, L. X Sun., F. Xu, Z. Gabelica: Energy & Environmental Science, Vol. 4 (2011) No. 11, p.4522.

Google Scholar

[6] X.L. Si, L.X. Sun, F. Xu, C.L. Jiao, F. Li, S.S. Liu, J. Zhang, L.F. Song, C.H. Jiang , S. Wang: International Journal of Hydrogen Energy, Vol. 36 (2011) No. 11, p.6698.

Google Scholar

[7] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre: Chemical Society Review, Vol. 112 (2012) No. 2, p.1232.

DOI: 10.1021/cr200256v

Google Scholar

[8] R. Ricco, L. Malfatti, M. Takahashi, A.J. Hill, P. Falcaro: Journal of Materials Chemistry A, Vol. 1 (2013) No. 42, p.13033.

Google Scholar

[9] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre: Journal of Materials Chemistry, Vol. 16 (2006) No. 7, p.626.

DOI: 10.1002/chin.200623294

Google Scholar

[10] M.Y. Masoomi, A. Morsali: Rsc Advances, Vol. 3 (2013) No. 42, p.19191.

Google Scholar

[11] A.I. Skoulidas: Journal American Chemical Society., Vol. 126 (2004) No. 5, p.1356.

Google Scholar

[12] J.G. Vitillo, L. Regli, S. Chavan, G. Ricchiardi, G. Spoto, P.D. Dietzel, S. Bordiga , A. Zecchina: J Am Chem Soc., Vol. 130 (2008) No. 26, p.8386.

DOI: 10.1021/ja8007159

Google Scholar

[13] C. Petit, B. Mendoza, D. O'Donnell, T.J. Bandosz: Langmuir, Vol. 27 (2011) No. 16, p.10234.

Google Scholar

[14] C. Petit, L. Huang, J. Jagiello, J. Kenvin, K.E. Gubbins, T.J. Bandosz: Langmuir, Vol. 27 (2011) No. 21 p.13043.

DOI: 10.1021/la202924y

Google Scholar

[15] C. Petit, S. Wrabetz, T.J. Bandosz: Journal of Materials Chemistry, Vol. 22 (2012) No. 40 p.21443.

Google Scholar

[16] C. Petit, M. Seredych, T.J. Bandosz: Journal of Materials Chemistry, Vol. 19 (2009) No. 48 p.9176.

Google Scholar

[17] C. Petit, T.J. Bandosz: Journal of Materials Chemistry Vol. 19 (2009) No. 36, p.6521.

Google Scholar

[18] C. Petit, T.J. Bandosz: Dalton Transactions., Vol. 41 (2012) No. 14, p.4027.

Google Scholar

[19] C. Petit, T.J. Bandosz: Advanced Functional Materials, Vol. 20 (2010) No. 1, p.111.

Google Scholar

[20] X. Huang, X. Qi, F. Boey, H. Zhang: Chemical Society Review, Vol. 41 (2012) No. 2, p.666.

Google Scholar

[21] A. Ciesielski, P. Samori: Chemical Society Review, Vol. 43 (2014) No. 1, p.381.

Google Scholar

[22] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff: Chemical Society Review, Vol. 39 (2010) No. 1, p.228.

Google Scholar

[23] C.O. Kappe: Angew Chem Int Ed Engl., Vol. 43 (2004) No. 46, p.6250.

Google Scholar

[24] S.S. Chui: Science, Vol. 283 (1999) No. 5405, p.1148.

Google Scholar

[25] W.S. Hummers, R.E. Offeman: Journal of the American Chemical Society, Vol. 80 (1958) No. 6, p.1339.

Google Scholar

[26] A.K. Geim: Science, Vol. 324 (2009) No. 5934, p.1530.

Google Scholar

[27] C. Petit, J. Burress, T.J. Bandosz: Carbon, Vol 49 (2011) No. 2, p.563.

Google Scholar

[28] M. Jahan, Q. Bao, J.X. Yang, K.P. Loh: Journal American Chemical Society, Vol. 132 (2010) No. 41, p.14487.

Google Scholar

[29] R. Kumar, K. Jayaramulu, T.K. Maji, C.N. Rao: Chemical Communication, Vol. 49 (2013) No. 43, p.4947.

Google Scholar

[30] L. Grajciar, O. Bludsky, P. Nachtigall: Journal of Physical Chemistry Letters, Vol. 1 (2010) No. 23, p.3354.

Google Scholar

[31] X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky: Science, Vol. 306 (2004) No. 5698, p.1012.

Google Scholar

[32] P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma: Microporous and Mesoporous Materials, Vol. 117 (2009) No. 1-2, p.406.

DOI: 10.1016/j.micromeso.2008.07.029

Google Scholar