Study on Al-Li3AlH6-CaO Composite for Hydrogen Production Performance

Article Preview

Abstract:

The Al-Li3AlH6 composite as a promising hydrogen production material has attracted increasing attention. However, the poor stability limits practical application. In this paper, the Al-Li3AlH6-CaO composite has been synthesized by ball milling. The results show that the increase of the amount of added CaO can enhance the rate of the hydrogen generation. The rate of the hydrogen generation reaches 40.1 % when the amount of added CaO is 30 wt%, which is due to the fact that the added CaO can destroys the Al2O3 films. The influence of amount of added CaO on the corrosion resistant of the Al-Li3AlH6-CaO is also investigated. The Al-Li3AlH6-CaO with 35 wt% CaO exhibits well corrosion resistant performance, and the hydrogen yield decreases by 22.65 % in 30 days, while the hydrogen yield of the Al-Li3AlH6-CaO without CaO drops by 45.4% in 5 days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

841-847

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Z. Wang, D.Y.C. Leung, M.K.H. Leung and M. Ni: Renewable and Sustainable Energy Reviews, Vol. 13 (2009) No. 4, p.845.

Google Scholar

[2] X. Huang, T. Gao, X. Pan, D. Wei, C. Lv, L. Qin and Y. Huang: Journal of Power Sources, Vol. 229(2013) , p.133.

Google Scholar

[3] N. Patel and A. Miotello: International Journal of Hydrogen Energy, Vol. 40 (2015) No. 3, p.1429.

Google Scholar

[4] H.B. Dai, G.L. Ma, H.J. Xia and P. Wang: Energy & Environmental Science, Vol. 4 (2011) No. 6, p.2206.

Google Scholar

[5] J.Y. Uan, M.C. Lin, C.Y. Cho, K.T. Liu and H.I. Lin: International Journal of Hydrogen Energy, Vol. 34 (2009) No. 4, p.1677.

Google Scholar

[6] J. Skrovan, A. Alfantazi and T. Troczynski: Journal of Applied Electrochemistry, Vol. 39 (2009) No. 10, p.1695.

Google Scholar

[7] J.T. Ziebarth, J.M. Woodall, R.A. Kramer and G. Choi: International Journal of Hydrogen Energy, Vol. 36 (2011) No. 9, p.5271.

Google Scholar

[8] H. Luo, J. Liu, X. Pu, J. Liang, Z. Wang, F. Wang, K. Zhang, Y. Peng,; B. Xu, J. Li, X. Yu and J. Ferreira: Journal of the American Ceramic Society, Vol. 94 (2011) No. 11, p.3976.

Google Scholar

[9] M.Q. Fan, F. Xu and L.X. Sun: Energ Fuel, Vol. 21 (2007) No. 4, p.2294.

Google Scholar

[10] M.Q. Fan, Y. Wang, R. Tang, D. Chen, W. Liu, G.L. Tian, C.J. Lv and K.Y. Shu: Renewable Energy, Vol. 60 (2013) , p.637.

Google Scholar

[11] F. Xu, L.X. Sun,; X.F. Lan, H.L. Chu, Y.J. Sun, H.Y. Zhou, F. Li, L.N. Yang, X.L. Si, J. Zhang, S. Walter and Z. Gabelica: International Journal of Hydrogen Energy, Vol. 39 (2014) No. 11, p.5514.

DOI: 10.1016/j.ijhydene.2014.01.154

Google Scholar

[12] T. Wu, F. Xu, L.X. Sun, Z. Cao, H.L. Chu, Y.J. Sun, L. Wang, P.H. Chen, J. Chen,; Y. Pang, Y.J. Zou, S.J. Qiu, C.L. Xiang and H.Z. Zhang: International Journal of Hydrogen Energy, Vol. 39 (2014) No. 20, p.10392.

DOI: 10.1016/j.ijhydene.2014.04.159

Google Scholar

[13] S.S. Liu, Y. Zhang, L.X. Sun, J. Zhang, J.N. Zhao, F. Xu, F and L. Huang: International Journal of Hydrogen Energy, Vol. 35(2010) No. 10, p.4554.

Google Scholar