LiBH4 Confined in Nitrogen-Doped Ordered Mesoporous Carbons for Hydrogen Storage

Article Preview

Abstract:

Nitrogen-doped ordered mesoporous carbon has been synthesized and used to confine LiBH4 to improve its dehydrogenation properties. The carbon has a high BET specific surface up to 448.25 m2/g with pore size centered at 1.2 and 4.1 nm. The effects of ball milling time and speed on de-hydrogenation were investigated. The onset hydrogen desorption temperature of LiBH4 is reduced to 100 °C by addition 40 wt% carbon, and it can release hydrogen of 8.3 wt% at 380 °C. Furthermore, cyclic dehydrogenation is studiedto estimate the stability of the samples in the present work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

858-863

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sun, J. Liu, Y. Jia, H. Wang, D.L. Sun, M. Zhu, X.D. Yao: International Journal of Hydrogen Energy, Vol. 37 (2012), p.18920.

Google Scholar

[2] P.P. Yuan, Bi.H. Liu, H.P. Zhu, W.Y. Pan, Z.P. Li: Journal of Alloys and Compounds, Vol. 557 (2013), p.124.

Google Scholar

[3] P. Vajeeston, P. Ravindran and H. Fjellvag: Nanotechnology, Vol. 20 (2009) No. 275704, p.1.

Google Scholar

[4] J. Shao, X.Z. Xiao, X.L. Fan, L.T. Zhang, S.Q. Li, H.W. Ge, Q.D. Wang, Li.X. Chen: Journal of Physical Chemistry C, Vol. 118 (2014), p.11252.

Google Scholar

[5] D. Blanchard, A. Nale, D. Sveinbjörnsson, T.M. Eggenhuisen, M.H.W. Verkuijlen, Suwarno, T. Vegge, A.P.M. Kentgens and P.E. de Jongh: Advanced Functional Materials, Vol. 25 (2015) No. 2, p.184.

DOI: 10.1002/adfm.201402538

Google Scholar

[6] Z.Z. Fang, X.D. Kang, P. Wang: International Journal of Hydrogen Energy, Vol. 35 (2010), p.8247.

Google Scholar

[7] A.F. Gross, J.J. Vajo, S.L. Van Atta and G.L. Olson: Journal of Physical Chemistry C, Vol. 112 (2008), p.5651.

Google Scholar

[8] S. Cahen, J. -B. Eymery, R. Janot, J. -M. Tarascon: Journal of Power Sources, Vol. 189 (2009), p.902.

Google Scholar

[9] X.F. Liu, D. Peaslee, C.Z. Jost and E.H. Majzou: Journal of Physical Chemistry C, Vol. 114 (2010), p.14036.

Google Scholar

[10] X.Y. Chen, L. Zhang, L.X. Cheng, Y.Y. He, Z.J. Zhang: Electrochimica Acta, Vol. 142 (2014), p.84.

Google Scholar

[11] H.J. Peng, J.Y. Liang, L. Zhu, J.Q. Huang, X.B. Cheng, X.F. Guo, W.P. Ding, W.C. Zhu and Q. Zhang: ACS Nano, Vol. 8 (2014) No. 11, p.11280.

Google Scholar

[12] Y.P. Zhai, Y.Q. Dou, X.X. Liu, S.S. Park, C.S. Ha, D.Y. Zhao: Carbon, Vol. 49 (2011), p.545.

Google Scholar

[13] J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, D.Y. Zhao: Advanced Functional Materials, Vol. 23 (2013) No. 18, p.2322.

Google Scholar