The Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres for Hydrogen Storage

Article Preview

Abstract:

The nitrogen-doped mesoporous carbon spheres have been synthesized via soft-template and hydrothermal synthetic strategies using phenol/formaldehyde resins as carbon sources and melamine as a nitrogen source. The obtained carbon spheres exhibit a spherical morphology with a size range of 3-5 μm, which possess the narrow microporosity (ca. 1.2 nm) and mesoporosity (ca. 4 nm), large surface area (560-1200 m2 g-1) and high nitrogen contents (up to 15.7 wt%). Due to the well-developed porous structure and high nitrogen content, the carbon spheres show high performance for hydrogen storage, and the hydrogen adsorption capacities are in the range of 140-185 cm3 g-1, which is better than that of most activated carbons. The incorporation of nitrogen into carbons is favored for hydrogen uptake in low pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

864-869

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature, Vol. 386 (1997), p.377.

DOI: 10.1038/386377a0

Google Scholar

[2] R. Stroebel, J. Garche, P.T. Moseley, L. Joerissen, G. Wolf, Journal of Power Sources, Vol. 159 (2006), p.781.

Google Scholar

[3] R.J. Konwar, M. De, International Journal of Energy Research, Vol. 39 (2015), p.223.

Google Scholar

[4] Z. Yang, Y. Xia, R. Mokaya, J Am Chem Soc, Vol. 129 (2007), p.1673.

Google Scholar

[5] M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Chemical Engineering and Processing, Vol. 79 (2014), p.1.

Google Scholar

[6] L.J. Murray, M. Dinca, J.R. Long, Chem Soc Rev, Vol 38 (2009), p.1294.

Google Scholar

[7] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science, Vol 300 (2003), p.1127.

DOI: 10.1126/science.1083440

Google Scholar

[8] S.N. Klyamkin, S.V. Chuvikov, N.V. Maletskaya, E.V. Kogan, V.P. Fedin, K.A. Kovalenko, D.N. Dybtsev, International Journal of Energy Research, Vol. 38 (2014), p.1562.

DOI: 10.1002/er.3175

Google Scholar

[9] H. Furukawa, O.M. Yaghi, J Am Chem Soc, Vol. 131 (2009), p.8875.

Google Scholar

[10] X.D. Li, J.H. Guo, H. Zhang, X.L. Cheng, X.Y. Liu, RSC Advances, Vol. 4 (2014), p.24526.

Google Scholar

[11] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science, Vol. 323 (2009), p.760.

Google Scholar

[12] L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angewandte Chemie-International Edition, Vol. 50 (2011), p.7132.

Google Scholar

[13] Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N. -B. Wong, Carbon, Vol. 57 (2013), p.433.

Google Scholar

[14] Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Angewandte Chemie-International Edition, Vol. 52 (2013), p.7800.

Google Scholar

[15] Y. Shao, J. Sui, G. Yin, Y. Gao, Applied Catalysis B-Environmental, Vol. 79 (2008), p.89.

Google Scholar

[16] S. Maldonado, S. Morin, K.J. Stevenson, Carbon, Vol. 44 (2006), pp.1429-1437.

Google Scholar

[17] G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Advanced Materials, Vol. 22 (2010), p.853.

Google Scholar

[18] W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon, Vol. 45 (2007), p.1757.

Google Scholar

[19] L. Liu, Q. -F. Deng, X. -X. Hou, Z. -Y. Yuan, Journal of Materials Chemistry, Vol. 22 (2012), p.15540.

Google Scholar

[20] Z. Yang, Y. Xia, X. Sun, R. Mokaya, Journal of Physical Chemistry B, Vol. 110 (2006), p.18424.

Google Scholar

[21] L. Wang, R.T. Yang, Journal of Physical Chemistry C, Vol. 116 (2012), p.1099.

Google Scholar

[22] G. Hu, D. Ma, M. Cheng, L. Liu, X.H. Bao, Chemical Communications, (2002) p. (1948).

Google Scholar

[23] N. Brun, K. Sakaushi, L. Yu, L. Giebeler, J. Eckert, M.M. Titirici, Physical Chemistry Chemical Physics, Vol. 15 (2013), p.6080.

DOI: 10.1039/c3cp50653c

Google Scholar

[24] Y. Wan, Y. Shi, D. Zhao, Chemistry of Materials, Vol. 20 (2008), p.932.

Google Scholar

[25] H. Wang, Q. Gao, J. Hu, J Am Chem Soc, Vol. 131 (2009), p.7016.

Google Scholar

[26] Y. Xia, G.S. Walker, D.M. Grant, R. Mokaya, J Am Chem Soc, Vol. 131 (2009), p.16493.

Google Scholar