The Effect of AlCl3 and Ti on Hydrogen Storage Performance of 4MgH2-Li3AlH6 System

Article Preview

Abstract:

The AlCl3/Ti co-doped 4MgH2-Li3AlH6 has been successfully synthesized using solid ball-milled method. The effect of AlCl3/Ti and different preparation conditions on reversible hydrogen storage of 4MgH2-Li3AlH6 were investigated. It was found that the formed Al3Ti and Al can improve the de/rehydriding performance. The onset temperature of the system dehydrogenation decreased to 58 °C, and it can release hydrogen of 7.2 wt.% at 400 °C. The hydriding of the system was found that the adsorption rate greatly increased from 0.02 to 0.35 wt.% min-1. The activation energy (Ea) of MgH2 dehydrogenation decreased from 147 to 113.7 kJ mol-1 by adding additive AlCl3 and Ti. The AlCl3/Ti improved the thermodynamic and kinetic performance of the 4MgH2-Li3AlH6 composite, which was attributed to the high catalytic activity of Al3Ti and Al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

876-882

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. L. arkrim, P. Malbruno and G. P. Tartaglia: International Journal of Hydrogen Energy, Vol. 27 (2012) No. 2, p.193.

Google Scholar

[2] I. Milanovic, S. Milosevic, L. Matovic, R. Vujasin, N. Nauakovic, R. Checchetto and J. G. Navakovic: International Journal of Hydrogen Energy, Vol. 38 (2013) No. 27, p.12152.

Google Scholar

[3] E. German, V. Verdinelli, C. R. Luna, A. Juan and D. Sholl: Journal of Physical Chemistry C, Vol. 118 (2014) No. 8, p.4231.

Google Scholar

[4] C. An, G. Liu, L. Li, Y. Wang, C. Chen, Y. Wang, L. Jiao and H. Yuan: journal of Nanoscale, Vol. 6 (2014) No. 6, p.3223.

Google Scholar

[5] R. R. Shahi, A. P. Tiwari, M. A. Shaz and O. N. Srivastava: International Journal of Hydrogen Energy, Vol. 38 (2013) No. 6, p.2778.

Google Scholar

[6] M. Y. Song, Y. J. Kwak, S. H. Lee, H. R. Park and B. G. Kim: Metals and Materials International, Vol. 19(2013) No. 4, p.879.

Google Scholar

[7] S. S. Liu, L.X. Sun, J. Zhang, Y. Zhang, F. Xu, Y. H. Xing, F. Li, J. Zhao, Y. Du, W. Y. Hu and H. Q. Deng: International Journal of Hydrogen Energy, Vol. 35(2010) No. 15, p.2778.

Google Scholar

[8] S. S. Liu, Y. Zhang, L. X. Sun, J. Zhang, J. N. Zhao, F. Xu and F. L. Huang: International Journal of Hydrogen Energy, Vol. 35 (2010) No. 10, p.4554.

Google Scholar

[9] L. Wang, F. Xu, L.X. Sun and H. L. Chu: Journal of Materials Review, Vol. 27(2013), p.58. (In Chinese).

Google Scholar

[10] L. Wang: Preparation and Thermal Analysis of Hydrogen Storage Materials. (MS, Liaoning Normal University, Dalian, 2012). (In Chinese).

Google Scholar

[11] O. Kircher and M. J. Fichtner: Journal Of Applied Physics, Vol. 95 (2004) No. 12, p.7748.

Google Scholar

[12] D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby and J. Muller: Journal Of Alloys And Compounds, Vol. 404 (2005), p.743.

DOI: 10.1016/j.jallcom.2005.01.126

Google Scholar

[13] H. W. Brinks, M. Sulic, C. M. Jensen and B. C. Hauback: Journal of Physical Chemistry B, Vol. 110 (2006) No. 6, p.2740.

Google Scholar

[14] C. Zhou, Z. Z. Fang, C. Ren, J. Li and J. Lu: Journal of Physical Chemistry C, Vol. 117 (2013) No. 25, p.12973.

Google Scholar

[15] G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz: Journal Of Alloys And Compounds, Vol. 292 (1999) No. 1-2, p.247.

Google Scholar

[16] G. Liu, Y. Wang, L. Jiao and H. Yuan: International Journal of Hydrogen Energy, Vol. 39 (2014) No. 8, p.3823.

Google Scholar