Efficiency Enhancement of ZnO Nanocrystalline Dye-Sensitized Solar Cells by Post-Treatment

Article Preview

Abstract:

In this paper, ZnO nanocrystalline photoanodes were treated by zinc acetate aqueous solution. The effect of surface chemical modification processing on the photovoltaic performance and electrochemical properties of ZnO nanocrystalline dye-sensitized solar cells (DSSCs) were studied systematically. The SEM results revealed that the surface of the ZnO photoanode films were rough and some aggregations were formed after the surface chemical modification processing. The number of aggregations increased with increasing processing time, and showed wide grain size distribution simultaneously, which effectively increased the light scattering and decreased the grain boundaries to suppress the electron recombination. Moreover, the surface of these photoanode films were filled with micropores, which was benefit to the infiltration of electrolyte solution. The short circuit current density increased from 7.20 mA•cm-2 to 8.61 mA • cm-2 when post-treatment 20 min, and the maximum energy conversion efficiency reached 3.61%, which enhanced 43% compared with that without post-treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

901-907

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang and Z.Q. Lin: Chemistry of Materials, Vol. 22 (2010) No. 2, p.579.

Google Scholar

[2] L. Kavan, N. Tétreault, T. Moehl and M. Grätzel: Journal of Physical Chemistry C, Vol. 118 (2014) No. 30, p.16408.

Google Scholar

[3] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. l Grätzel: Thin Solid Films, Vol. 516 (2008) No. 14, p.4613.

DOI: 10.1016/j.tsf.2007.05.090

Google Scholar

[4] F.R. Li, G.C. Wang, Y. Jiao, J.Y. Li and S.H. Xie: Journal of Alloys and Compounds, Vol. 611 (2014), p.19.

Google Scholar

[5] Z.X. Cai, G.C. Wang and S.H. Xie: Natural Science Journal of Xiangtan University, Vol. 34 (2012) No. 3, p.20. (In Chinese).

Google Scholar

[6] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N.A. Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin and M. Grätzel: Nature chemistry, Vol. 6 (2014) No. 3, p.242.

DOI: 10.1038/nchem.1861

Google Scholar

[7] G.C. Wang, Z.X. Cai, F.R. Li, S.T. Tan, S.H. Xie and J.Y. Li: Journal of Alloys and Compounds, Vol. 583 (2014), p, 414.

Google Scholar

[8] D. Hwang, H. Lee S.Y. Jang, S.M. Jo, D. Kim, Y. Seo and D.Y. Kim: ACS applied materials & interfaces, Vol. 3 (2011) No. 7, p.2719.

Google Scholar

[9] N. Sakai, T. Miyasaka and T.N. Murakami: The Journal of Physical Chemistry C, Vol. 117 (2013) No. 21, p.10949.

Google Scholar

[10] E. Ramasamy and J. Lee: The Journal of Physical Chemistry C, Vol. 114 (2010) No. 50, p.22032.

Google Scholar

[11] H.D. Zheng, Y. Tachibana and K. Kalantar-zadeh: Langmuir : the ACS journal of surfaces and colloids Langmuir, Vol. 26 (2010) No. 24, p.19148.

DOI: 10.1021/la103692y

Google Scholar

[12] J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H.D. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh: ACS Nano, Vol. 6 (2012) No. 5, p.4045.

DOI: 10.1021/nn300408p

Google Scholar

[13] F.R. Li, Y. Jiao, S.H. Xie and J.Y. Li: Journal of Power Sources, Vol. 280 (2015), p.373.

Google Scholar

[14] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.R. Jung and B. Current Applied Physics, Vol. 12 (2012) No. 3, p.737.

Google Scholar

[15] G.W. Yang, C.C. Miao, Z.H. Bu, Q. Wang and W.Y. Guo: Journal of Power Sources, Vol. 233 (2013), p.74.

Google Scholar

[16] L. Yang, B.G. Zhai, Q.L. Ma and Y.M. Huang: Journal of Alloys and Compounds, Vol. 605 (2014), p.109.

Google Scholar

[17] K. Park, Q.F. Zhang, B.B. Garcia, X.Y. Zhou, Y.H. Jeong and G.Z. Cao: Advanced Materals, Vol. 22 (2010) No. 21, p.2329.

Google Scholar

[18] X. Yin, X.Z. Liu, L. Wang and B. Liu, Electrochemistry Communications, Vol. 12 (2010) No. 9, p.1241.

Google Scholar

[19] Z.H. Dong, X. Y Lai, J.E. Halpert, N.L. Yang, L.X. Yi, J. Zhai, D. Wang, Z.Y. Tang and L. Jiang: Advanced Materals, Vol. 24 (2012) No. 8, p.1046.

Google Scholar

[20] Y. Zhou, C. Xia, X.Y. Hu, W. Huang, A. A. Aref, B. Wang, Z.J. Liu, Y.M. Sun, W. Zhou and Y.W. Tang: Applied Surface Science, Vol. 292 (2014), p.111.

Google Scholar

[21] A.D. Pasquier, H.H. Chen and Y.C. Lu: Applied Physics Letters, Vol. 89 (2006) No. 25, p.253513.

Google Scholar

[22] L.Y. Lin, M. Yeh, C. Lee, C.Y. Chou, R. Vittal and K. Ho: Electrochimica Acta, Vol. 62 (2012), p.341.

Google Scholar

[23] G.J. Fodjouong, Y.M. Feng, M. Sangare and X.T. Huang: Materials Science in Semiconductor Processing, Vol. 16 (2013) No. 3, p.652.

Google Scholar

[24] T.P. Chou, Q.F. Zhang, G.E. Fryxell and G.Z. Cao: Advanced Materials, Vol. 19 (2007) No. 18, p.2588.

Google Scholar

[25] H.H. Wang, R. Bhattacharjee, I.M. Hung, L.K. Li and R. J Zeng: Electrochimica Acta, Vol. 111 (2013), p.797.

Google Scholar

[26] L.L. Lu, R.J. Li, K. Fan and T.Y. Peng: Solar Energy, Vol. 84 (2010) No. 5, p.844.

Google Scholar

[27] F. P Yan, L. H Huang, J.S. Zheng, J. Huang, Z. Lin, F. Huang and M. D, Wei: Langmuir : the ACS journal of surfaces and colloids, Vol. 26 (2010) No. 10, p.7153.

Google Scholar

[28] C. K. N. Peh, L. Ke and G. W. Ho: Materials Letters, Vol. 64 (2010) No. 12, p.1372.

Google Scholar

[29] S. Yun and S. Lim: Journal of Solid State Chemistry, Vol. 184 (2011) No. 2, p.273.

Google Scholar

[30] N. Ye, J.J. Qi, Z. Qi, X.M. Zhang, Y. Yang, J. Liu and Y. Zhang: Journal of Power Sources, Vol. 195 (2010) No. 17, p.5806.

Google Scholar

[31] T. Trang Nguyen, V.N. Tran and T.C. Bach: Materials Chemistry and Physics, Vol. 144 (2014) No. 1, p.114.

Google Scholar

[32] S. S. Kanmani, N. Rajamanickam and K. Ramachandran: Organic Electronics, Vol. 15 (2014) No. 10, p.2302.

Google Scholar

[33] S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.K. Lee, J.Y. Kim, H.S. Jung and K.S. Hong: The Journal of Physical Chemistry C, Vol. 113 (2009) No. 16, p.6878.

Google Scholar

[34] S. Yun, J. g Lee, J.C. and S. Lim: Journal of Physics and Chemistry of Solids, Vol. 71 (2010) No. 12, p.1724.

Google Scholar

[35] C.H. Ku and J.J. Wu: Nanotechnology, Vol. 18 (2007) No. 50, p.505706.

Google Scholar

[36] M.S. Wu, C.H. Tsai, J.J. Jow and T.C. Wei: Electrochimica Acta, Vol. 56 (2011) No. 24, p.8906.

Google Scholar

[37] D. Kim, P. Roy, K. Lee and P. Schmuki: Electrochemistry Communications, Vol. 12 (2010) No. 4, p.574.

Google Scholar

[38] N. Sakai, T. Miyasaka and T.N. Murakami: The Journal of Physical Chemistry C, Vol. 117 (2013) No. 21, p.10949.

Google Scholar