Facile Synthesis of CoSe2 Nanoparticles and their Electrocatalytic Performance for Hydrogen Evolution Reaction

Article Preview

Abstract:

For more energy-efficient and economical hydrogen production, highly active noble metal-free hydrogen evolution catalysts are a priority for all. Herein, we report a facile one-pot hydrothermal synthesis of CoSe2 nanoparticles with their electrocatalytic performance for hydrogen evolution reaction. The synthesized CoSe2 nanoparticles have an average diameter of 50-70 nm with a uniform distribution. They also exhibited good electrocatalytic performance for hydrogen evolution reaction with the onset overpotential and Tafel slope of 140 mV and 95 mV/dec, respectively. The results provide a facile and effective way for the exploration of efficient Co-based HER catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

916-920

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Sheng, H.A. Gasteiger and Y. Shao-Horn: Journal of the Electrochemical Society, Vol. 157 (2010) No. 11, p.1529.

Google Scholar

[2] J. Kye, M. Shin, B. Lim, J.W. Jang I. Oh and S. Hwang: ACS Nano, Vol. 7 (2013) No. 7, p.6017.

Google Scholar

[3] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda and M. Chhowalla: Nature Materials, Vol. 12 (2013) No. 9, p.850.

DOI: 10.1038/nmat3700

Google Scholar

[4] D. Merki, S. Fierro, H. Vrubel and X. Hu: Chemical Science, Vol. 2 (2011) No. 7, p.1262.

Google Scholar

[5] D. Merki and X. Hu: Energy & Environmental Science, Vol. 4 (2011) No. 10, p.3878.

Google Scholar

[6] H. Vrubel and D. Merki: Energy & Environmental Science, Vol. 5 (2012) No. 3, pp.6136-6144.

Google Scholar

[7] J. Kim, S. Byun, A.J. Smith, J. Yu and J. Huang: the Journal of Physical Chemistry Letters, Vol. 4 (2013) No. 8, p.1227.

Google Scholar

[8] D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao and Y. Cui: Nano Letters, Vol. 13 (2013) No. 3, p.1341.

Google Scholar

[9] M.R. Gao, Z.Y. Lin, T.T. Zhuang, J. Jiang and Y.F. Xu: Journal of Materials Chemistry, Vol. 22 (2012) No. 27, p.13662.

Google Scholar

[10] D. S. Kong, J. J. Cha, H. T. Wang, H. R. Lee and Y. Cui: Energy & Environmental Science, Vol. 6 (2013), No. 12, p.3553.

Google Scholar

[11] H. Zhang, L. Lei and X. Zhang: RSC Advances, Vol. 4 (2014), No. 97, p.54344.

Google Scholar

[12] H. X. Zhang, B. Yang, X.L. Wu, Z. Li, L. Lei and X. Zhang: ACS Applied Materials & Interfaces, Vol. 7 (2015), No. 3, p.1772.

Google Scholar

[13] H. Sun, L. Zhang and Z.S. Wang: Journal of Materials Chemistry A, Vol. 2 (2014), No. 38, p.16023.

Google Scholar

[14] M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu and J. Jiang: Nature Communications, Vol. 6 (2015), p.5982.

Google Scholar

[15] M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang and S. H. Yu: ACS Nano, Vol. 8 (2014), No. 4, p.3970.

Google Scholar

[16] J. L. Yang, X. P. Shen, Z. Y. Ji and G. X. Zhu: Journal of Materials Science, Vol. 48 (2013), No. 22, p.7913.

Google Scholar

[17] Y. J. Feng, T. He and N. Alonso-Vante: Fuel Cells, Vol. 10 (2010), No. 1, p.77.

Google Scholar

[18] W. X. Zhang, Z. H. Yang, J. W. Liu, Z. H. Hui, W. C. Yu, Y. T. Qian, G. E. Zhou and L. Yang: Materials research bulletin, Vol. 35 (2000), No. 14, p.2403.

Google Scholar