Optimized Synthetic Conditions of 0.6Li2MnO3·0.4LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium Batteries via Sol-Gel Method

Abstract:

Article Preview

Li-rich layer-structure 0.6Li2MnO3·0.4LiNi1/3Co1/3Mn1/3O2 (LMO) cathode materials have been synthesized by sol-gel method using citric acid as a cheating agent. The effects of different ratios of solvent and the amount of excessive lithium are discussed systematically. When changing the ratio of ethanol/H2O and the amount of excessive lithium, the morphology and electrochemical properties will be changed accordingly. The crystal structure of Li-rich LMO was characterized by X-ray diffraction. The morphology was characterized by scanning electron microscope, and the Li-rich LMO cathodes show bulk with the particle size of around 150 nm. The charge/discharge test showed the Li-rich LMO synthesized with 100% ethanol and 5% Li excess sintered at 900 °C for 24 h subsequently has the best electrochemical performance. Within the cut-off voltage between 2.5 and 4.8 V, the initial discharge capacity is 256.8 mAh g-1 at 0.1 C; and after 50 cycles the discharge capacity remains 230.2 mAh g-1. By modifying the ratio of solvent in the formation of gel, it is promising to extend the synthesis of other electrode materials of lithium ion batteries basing on the traditional sol-gel method.

Info:

Periodical:

Edited by:

Yu Xun Wang, Gui Chun Huang and Linqing Luo

Pages:

908-915

Citation:

Y. F. Song et al., "Optimized Synthetic Conditions of 0.6Li2MnO3·0.4LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium Batteries via Sol-Gel Method", Materials Science Forum, Vol. 852, pp. 908-915, 2016

Online since:

April 2016

Export:

Price:

$38.00

[1] A.R. Armstrong and P.G. Bruce: Nature, Vol. 6582 (1996) No. 381, p.499.

[2] J.M. Tarascon and M. Armand: Nature, Vol. 6861 (2001) No. 414, p.359.

[3] M.S. Whittingham: Chemical reviews, Vol. 10 (2004) No. 104, p.4271.

[4] J.B. Goodenough and K.S. Park: Journal of the American Chemical Society, Vol. 4 (2013) No. 135, p.1167.

[5] S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang and R. Santhanam: Journal of Power Sources, Vol. 2 (2009) No. 188, p.564.

[6] Y. Chen, S. Zeng, J.F. Qian, Y.D. Wang, Y.L. Cao, H.X. Yang and X.P. Ai: ACS applied materials & interfaces, Vol. 6( 2014), No. 5, p.3508.

[7] H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar and J. Cho: Advanced Functional Materials, Vol. 22 (2010) No. 20, p.3818.

[8] J. Park, J.H. Seo, G. Plett, W. Lu and A.M. Sastry: Electrochemical and Solid-State Letters, Vol. 2 (2011) No. 14, p. A14.

[9] P. He, H.J. Yu, D. Li and H.S. Zhou: Journal of Materials Chemistry, Vol. 9 (2012) No. 22, p.3680.

[10] T. Ohzuku and Y. Makimura:  Chemistry Letters, Vol. 7(2001), p.642.

[11] T. Ohzuku and Y. Makimura: Chemistry Letters, Vol. 21(2001), p.744.

[12] A. Ito, D.C. Li, Y. Sato, M. Arao, M. Watanabe, M. Hatano, H. Horie and Y. Ohsawa: Journal of Power Sources, Vol. 2 (2010) No. 195, p.567.

[13] D.L. Ye and L.Z. Wang: Materials Technology: Advanced Functional Materials, Vol. A2 (2014) No. 29, p. A59.

[14] S.H. Kang and M.M. Thackeray: Electrochemistry Communications, Vol. 4 (2009) No. 11, p.748.

[15] J. Wang, B. Qiu, H.L. Cao, Y.Y. Xia and Z.P. Liu: Journal of Power Sources, Vol. 218 (2012), p.128.

[16] J.H. Lim, H. Bang, K.S. Lee, K. Amine and Y.K. Sun: Journal of Power Sources, Vol. 18 (2009) No. 189, p.571.

[17] J. Liu and B.R. Jayan, A. Manthiram: The Journal of Physical Chemistry C, Vol. 20 (2010) No. 114, p.9528.

[18] M. Tabuchi, A. Nakashima, K. Ado, H. Kageyarna and K. Tatsumi: Chemistry of materials, Vol. 18(2005) No. 17, p.4668.

[19] J.H. Kim, C.W. Park and Y.K. Sun: Solid State Ionics, Vol. 1 (2003) No. 164, p.43.

[20] C. Sun, S. Rajasekhara, J.B. Goodenough and F. Zhou: Journal of the American Chemical Society, Vol. 7(2011) No. 133 , p.2132.

[21] Y. Ou, J. J. Wen, H. P. Xu, S. H. Xie and J.Y. Li: Journal of Physics and Chemistry of Solids, Vol. 2 (2013) No. 74 , p.322.

[22] S.J. Shi, J.P. Tu, Y.D. Zhang, Y.J. Zhang, C.D. Gu and X.L. Wang: Electrochimica Acta, Vol. 109 (2013) p.828.

[23] B. Hwang, R. Santhanam and C. Chen: Journal of power sources, Vol. 114 (2003) No. 2, p.244.

[24] T. Ohzuku, A. Ueda and M. Nagayama: Journal of the Electrochemical Society, Vol. 7 (1993) No. 140, p.1862.

[25] C.C. Fu, G.S. Li, D. Luo,Q. Li, J.M. Fan and L.P. Li: ACS applied materials & interfaces, Vol. 18(2014) No. 6, p.15822.

[26] S.W. Oh, S.H. Park, C.W. Park and Y.K. Sun: Solid State Ionics, Vol. 3 (2004) No. 171, p.167.

[27] Y.M. Choi, S. IIPyun and S.I. Moon: Solid State Ionics, Vol. 1 (1996) No. 89, p.43.

[28] M.M. Thackeray, C.S. Johnson, J.T. Vaughey, N. Li and S.A. Hackney: Journal of Materials Chemistry, Vol. 23(2005) No. 15 , p.2257.

[29] C.S. Johnson, N. Li, C. Lefief, J.T. Vaughey and M.M. Thackeray: Chemistry of Materials, Vol. 19(2008) No. 20 , p.6095.