Advanced Materials for Extreme Environment Aerospace Actuators

Article Preview

Abstract:

In this paper the important impact of high temperature withstand on performance of electromagnetic actuators for aerospace applications is illustrated. Particular materials enabling high performance and increased reliability in such applications are analysed both through numerical simulations and experimental validation. Specific examples outline advancements in electrical machine technologies for this class of problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-124

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, Overview of electric motor technologies used for more electric aircraft (MEA), IEEE Trans. Ind. Electron., vol. 59, no 9, pp.3523-3531, Sep. (2012).

DOI: 10.1109/tie.2011.2165453

Google Scholar

[2] E. M. Tsampouris, M. E. Beniakar, and A. G. Kladas, Geometry optimization of PMSMs comparing full and fractional pitch winding configurations for aerospace actuation applications, IEEE Trans. Magn., vol. 48, no. 2, p.943–946, Feb. (2012).

DOI: 10.1109/tmag.2011.2174206

Google Scholar

[3] D. G. Dorrell, Combined thermal and electromagnetic analysis of permanent-magnet and induction machines to aid calculation, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3566-3574, Oct. (2008).

DOI: 10.1109/tie.2008.925311

Google Scholar

[4] J. Nerg, M. Rilla, and J. Pyrhönen, Thermal analysis of radial-flux electrical machines with a high power density, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3543-3554, Oct. (2008).

DOI: 10.1109/tie.2008.927403

Google Scholar

[5] G. Traxler-Samek, R. Zickermann, and A. Schwery, Cooling airflow, losses, and temperatures in large air-cooled synchronous machines, IEEE Trans. Ind. Electron., vol. 57, no 1, pp.172-180, Jan. (2010).

DOI: 10.1109/tie.2009.2031191

Google Scholar

[6] N. Bracikowski, M. Hecquet, P. Brochet, and S. V. Shirinskii, Multiphysics modeling of a permanent magnet synchronous machine by using lumped models, IEEE Trans. Ind. Electron., vol. 59, no 6, pp.2426-2437, Jun. (2012).

DOI: 10.1109/tie.2011.2169640

Google Scholar

[7] C. Jungreuthmayer, T. Bäuml, O. Winter, M. Ganchev, H. Kapeller, A. Haumer, and C. Kral, A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics, IEEE Trans. Ind. Electron., vol. 59, no 12, pp.4568-4578, Dec. (2012).

DOI: 10.1109/tie.2011.2176696

Google Scholar

[8] A. Tenconi, F. Profumo, S. E. Bauer, and M. D. Hennen, Temperatures evaluation in an integrated motor drive for traction applications, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3619-3626, Oct. (2008).

DOI: 10.1109/tie.2008.2003099

Google Scholar

[9] S. Dwari and L. Parsa, Design of halbach-array-based permanent-magnet motors with high acceleration, IEEE Trans. Ind. Electron., vol. 58, no 9, pp.3768-3775, Sep. (2011).

DOI: 10.1109/tie.2011.2112315

Google Scholar

[10] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, Evolution and modern approaches for thermal analysis of electrical machines, IEEE Trans. Ind. Electron., vol. 56, no 3, pp.871-882, Mar. (2009).

DOI: 10.1109/tie.2008.2011622

Google Scholar

[11] T. D. Kefalas and A. G. Kladas, Thermal Investigation of Permanent-Magnet Synchronous Motor for Aerospace Applications s, IEEE Trans. Ind. Electron., vol. 61, no. 8, pp.4401-4411, August (2014).

DOI: 10.1109/tie.2013.2278521

Google Scholar

[12] C. Gerada, M. Galea, A. Kladas, Electrical Machines for High Performance Aerospace Applications", 2nd IEEE Workshop on Electrical Machines Design, Control and Diagnostics - IEEE-WEMDCD, 2015, March 26-27, 2015, Torino, Italy.

DOI: 10.1109/wemdcd.2015.7194513

Google Scholar