[1]
W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, Overview of electric motor technologies used for more electric aircraft (MEA), IEEE Trans. Ind. Electron., vol. 59, no 9, pp.3523-3531, Sep. (2012).
DOI: 10.1109/tie.2011.2165453
Google Scholar
[2]
E. M. Tsampouris, M. E. Beniakar, and A. G. Kladas, Geometry optimization of PMSMs comparing full and fractional pitch winding configurations for aerospace actuation applications, IEEE Trans. Magn., vol. 48, no. 2, p.943–946, Feb. (2012).
DOI: 10.1109/tmag.2011.2174206
Google Scholar
[3]
D. G. Dorrell, Combined thermal and electromagnetic analysis of permanent-magnet and induction machines to aid calculation, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3566-3574, Oct. (2008).
DOI: 10.1109/tie.2008.925311
Google Scholar
[4]
J. Nerg, M. Rilla, and J. Pyrhönen, Thermal analysis of radial-flux electrical machines with a high power density, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3543-3554, Oct. (2008).
DOI: 10.1109/tie.2008.927403
Google Scholar
[5]
G. Traxler-Samek, R. Zickermann, and A. Schwery, Cooling airflow, losses, and temperatures in large air-cooled synchronous machines, IEEE Trans. Ind. Electron., vol. 57, no 1, pp.172-180, Jan. (2010).
DOI: 10.1109/tie.2009.2031191
Google Scholar
[6]
N. Bracikowski, M. Hecquet, P. Brochet, and S. V. Shirinskii, Multiphysics modeling of a permanent magnet synchronous machine by using lumped models, IEEE Trans. Ind. Electron., vol. 59, no 6, pp.2426-2437, Jun. (2012).
DOI: 10.1109/tie.2011.2169640
Google Scholar
[7]
C. Jungreuthmayer, T. Bäuml, O. Winter, M. Ganchev, H. Kapeller, A. Haumer, and C. Kral, A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics, IEEE Trans. Ind. Electron., vol. 59, no 12, pp.4568-4578, Dec. (2012).
DOI: 10.1109/tie.2011.2176696
Google Scholar
[8]
A. Tenconi, F. Profumo, S. E. Bauer, and M. D. Hennen, Temperatures evaluation in an integrated motor drive for traction applications, IEEE Trans. Ind. Electron., vol. 55, no 10, pp.3619-3626, Oct. (2008).
DOI: 10.1109/tie.2008.2003099
Google Scholar
[9]
S. Dwari and L. Parsa, Design of halbach-array-based permanent-magnet motors with high acceleration, IEEE Trans. Ind. Electron., vol. 58, no 9, pp.3768-3775, Sep. (2011).
DOI: 10.1109/tie.2011.2112315
Google Scholar
[10]
A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, Evolution and modern approaches for thermal analysis of electrical machines, IEEE Trans. Ind. Electron., vol. 56, no 3, pp.871-882, Mar. (2009).
DOI: 10.1109/tie.2008.2011622
Google Scholar
[11]
T. D. Kefalas and A. G. Kladas, Thermal Investigation of Permanent-Magnet Synchronous Motor for Aerospace Applications s, IEEE Trans. Ind. Electron., vol. 61, no. 8, pp.4401-4411, August (2014).
DOI: 10.1109/tie.2013.2278521
Google Scholar
[12]
C. Gerada, M. Galea, A. Kladas, Electrical Machines for High Performance Aerospace Applications", 2nd IEEE Workshop on Electrical Machines Design, Control and Diagnostics - IEEE-WEMDCD, 2015, March 26-27, 2015, Torino, Italy.
DOI: 10.1109/wemdcd.2015.7194513
Google Scholar