[1]
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature452(2008) 301.
DOI: 10.1038/nature06599
Google Scholar
[2]
T.Y. Cath, A.E. Childress,M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70.
DOI: 10.1016/j.memsci.2006.05.048
Google Scholar
[3]
C. Charcosset, A review of membrane processesandrenewable energiesfor desalination, Desalination 245 (2009)214.
Google Scholar
[4]
T.A. Dabbagh, The role of desalination insustaining economic growth in the Gulf, in: Proceedings of the IDA World Congresson Desalinationand Water Sciences, 1995, Abu Dhabi Publishing Co., AbuDhabi, United Arab Emirates.
Google Scholar
[5]
S. Adham, J. Oppenheimer, L. Liu, M. Kumar, Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis, Draft Final Report Water Reuse Foundation, (2007).
DOI: 10.1016/j.watres.2007.01.042
Google Scholar
[6]
M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res. 49 (2010) 5869.
DOI: 10.1021/ie100438x
Google Scholar
[7]
Q. Ge, J. Su, T.S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res. 50 (2011) 382.
DOI: 10.1021/ie101013w
Google Scholar
[8]
H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4magnetic nanoparticles for brackish water desalination, Sep. Purif. Technol. 81(2011) 392.
DOI: 10.1016/j.seppur.2011.08.007
Google Scholar
[9]
P. Christian, F. Von der Kammer, M. Baalousha, Th. Hofmann, Nanoparticles: structure, properties, preparation and behaviour in environmental media, Ecotoxicology 17 (2008) 326.
DOI: 10.1007/s10646-008-0213-1
Google Scholar
[10]
E. M. Martin Del Valle, Cyclodextrines and their uses: a review, Process Biochem. 39 (2004) 1033.
Google Scholar
[11]
W. Mderawan, T. T. Ong, T. C. Lee, D. J. Young, C. B. Ching, S. C. Ng, Tetrahedron Lett. 46(2005)7905.
Google Scholar
[12]
R. Palin, J. A. Groove, A. B. Prosser, M. -Q. Zhang, Tetrahedron Lett. 42(2001) 8897.
Google Scholar
[13]
J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev. 98 (1998) 1743.
Google Scholar
[14]
S.S. Banerjee, D.H. Chen, Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery, Nanotechnol. 19 (2008) 265601-265607.
DOI: 10.1088/0957-4484/19/26/265602
Google Scholar
[15]
Sai Bhargav. S and I Prabha, Removal of Arsenic and Copper Metals from Contaminated Water using Iron (III) Oxide Nanoparticle, Int. J. Chem. Chem. Eng. 3 (2013) 107.
Google Scholar
[16]
Young Soo Kang, SubhashRisbud, John F. Rabolt and Pieter Stroeve, Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles, Chem. Mater. 8 (1996) 2209.
Google Scholar
[17]
Jongnam Park, Kwangjin An, Yosun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, Nong-Moon Hwang and TaeghwanHyeon, Nature Mater. Lett. 3(2004) 891.
Google Scholar
[18]
G. S. E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, Chem. Phys. Chem. 14(2013) (1934).
DOI: 10.1002/cphc.201300161
Google Scholar
[19]
C. Giannouli, Magnetite: Synthesis and Characterization, Key Eng. Mater. 2253(2013) 460.
Google Scholar
[20]
TaeghwanHyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na, Synthesis of Highly Crystalline and Monodisperse MaghemiteNanocrystallites without a Size-Selection Process, J. Am. Chem. Soc. 123 (2001) 12798.
DOI: 10.1021/ja016812s
Google Scholar
[21]
Â. L. Andrade, D. M. Souza, M. C. Pereira, J. D. Fabris, R. Z. Domingues, pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method, Quim. Nova 33 (2010) 524.
DOI: 10.1590/s0100-40422010000300006
Google Scholar
[22]
T. Koutzarova, S. Kolev, Ch. Ghelev, D. Paneva, and I. Nedkov, Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique, Phys. Stat. Sol. C3 (2006) 1302.
DOI: 10.1002/pssc.200563115
Google Scholar
[23]
Xiantao Wen, Junxiao Yang, Bin He, ZhongweiGu, Preparation of monodisperse magnetite nanoparticles under mild conditions, Current Applied Physics 8 (2008) 535.
DOI: 10.1016/j.cap.2007.09.003
Google Scholar
[24]
Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning, X. P. Luo, D. Y. Tian, D. Xi, 2004, Synthesis of magnetite nanoparticles in W/O micro-emulsion, J. Mater. Sci. 39 (2004) 2633.
DOI: 10.1023/b:jmsc.0000020046.68106.22
Google Scholar
[25]
Xin Liang, Xun Wang, Jing Zhuang, Yongtao Chen, Dingsheng Wang, and Yadong Li, Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals, Adv. Funct. Mater. 16 (2006) 1805.
DOI: 10.1002/adfm.200500884
Google Scholar
[26]
O. N. Shebanova, P. Lazor, Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation, J. Raman Spectrosc. 34 (2003) 845.
DOI: 10.1002/jrs.1056
Google Scholar
[27]
O. N. Shebanova, Peter Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424.
DOI: 10.1016/s0022-4596(03)00294-9
Google Scholar
[28]
De Faria, D.L.A., Silva, V., de Oliveia, M.T., Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc. 28 (1997) 873.
DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b
Google Scholar