Synthesis of Superparamagnetic Nanoparticles for Desalination Purposes

Article Preview

Abstract:

The aim of this study is to describe the synthetic procedure of superparamagnetic nanoparticles of magnetite and maghemite and to use the magnetic merit of thesenano-sized ferrite particles coated byorganic substances having good water solubility to desalinate saline water. The idea derives from the experimental results of research groups using magnetic particles covered by polymers to increase the efficiency of membranes in forward osmosis desalination plants. The magnetic particles can beseparatedfrom water by an external magnet field easily.As magnetic particles, Fe3O4 can be prepared in different sizes from nanoto microscale by the help of co-precipitation or thermal decomposition techniques. These superparamagnetic nanoparticles are well-promising candidates for use in desalination purposes either from own or after their fabrication with polymer molecules, such as cyclodexrins, in their original form or in a modified one in order to enhance their water solubility, according to some preliminary experimental results found by our research team but not referred here. Herein, various inexpensive synthetic routes for superparamagnetic nanoparticles of magnetite (Fe3O4) and maghemite ( -Fe2O3) are described, as well as the characterization results of the produced nanoparticles with XRD, TEM, FT-IR, RAMAN, DFT and TGA/DTG analytical techniques are also referred.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-115

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature452(2008) 301.

DOI: 10.1038/nature06599

Google Scholar

[2] T.Y. Cath, A.E. Childress,M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70.

DOI: 10.1016/j.memsci.2006.05.048

Google Scholar

[3] C. Charcosset, A review of membrane processesandrenewable energiesfor desalination, Desalination 245 (2009)214.

Google Scholar

[4] T.A. Dabbagh, The role of desalination insustaining economic growth in the Gulf, in: Proceedings of the IDA World Congresson Desalinationand Water Sciences, 1995, Abu Dhabi Publishing Co., AbuDhabi, United Arab Emirates.

Google Scholar

[5] S. Adham, J. Oppenheimer, L. Liu, M. Kumar, Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis, Draft Final Report Water Reuse Foundation, (2007).

DOI: 10.1016/j.watres.2007.01.042

Google Scholar

[6] M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res. 49 (2010) 5869.

DOI: 10.1021/ie100438x

Google Scholar

[7] Q. Ge, J. Su, T.S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res. 50 (2011) 382.

DOI: 10.1021/ie101013w

Google Scholar

[8] H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4magnetic nanoparticles for brackish water desalination, Sep. Purif. Technol. 81(2011) 392.

DOI: 10.1016/j.seppur.2011.08.007

Google Scholar

[9] P. Christian, F. Von der Kammer, M. Baalousha, Th. Hofmann, Nanoparticles: structure, properties, preparation and behaviour in environmental media, Ecotoxicology 17 (2008) 326.

DOI: 10.1007/s10646-008-0213-1

Google Scholar

[10] E. M. Martin Del Valle, Cyclodextrines and their uses: a review, Process Biochem. 39 (2004) 1033.

Google Scholar

[11] W. Mderawan, T. T. Ong, T. C. Lee, D. J. Young, C. B. Ching, S. C. Ng, Tetrahedron Lett. 46(2005)7905.

Google Scholar

[12] R. Palin, J. A. Groove, A. B. Prosser, M. -Q. Zhang, Tetrahedron Lett. 42(2001) 8897.

Google Scholar

[13] J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev. 98 (1998) 1743.

Google Scholar

[14] S.S. Banerjee, D.H. Chen, Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery, Nanotechnol. 19 (2008) 265601-265607.

DOI: 10.1088/0957-4484/19/26/265602

Google Scholar

[15] Sai Bhargav. S and I Prabha, Removal of Arsenic and Copper Metals from Contaminated Water using Iron (III) Oxide Nanoparticle, Int. J. Chem. Chem. Eng. 3 (2013) 107.

Google Scholar

[16] Young Soo Kang, SubhashRisbud, John F. Rabolt and Pieter Stroeve, Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles, Chem. Mater. 8 (1996) 2209.

Google Scholar

[17] Jongnam Park, Kwangjin An, Yosun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, Nong-Moon Hwang and TaeghwanHyeon, Nature Mater. Lett. 3(2004) 891.

Google Scholar

[18] G. S. E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, Chem. Phys. Chem. 14(2013) (1934).

DOI: 10.1002/cphc.201300161

Google Scholar

[19] C. Giannouli, Magnetite: Synthesis and Characterization, Key Eng. Mater. 2253(2013) 460.

Google Scholar

[20] TaeghwanHyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na, Synthesis of Highly Crystalline and Monodisperse MaghemiteNanocrystallites without a Size-Selection Process, J. Am. Chem. Soc. 123 (2001) 12798.

DOI: 10.1021/ja016812s

Google Scholar

[21] Â. L. Andrade, D. M. Souza, M. C. Pereira, J. D. Fabris, R. Z. Domingues, pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method, Quim. Nova 33 (2010) 524.

DOI: 10.1590/s0100-40422010000300006

Google Scholar

[22] T. Koutzarova, S. Kolev, Ch. Ghelev, D. Paneva, and I. Nedkov, Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique, Phys. Stat. Sol. C3 (2006) 1302.

DOI: 10.1002/pssc.200563115

Google Scholar

[23] Xiantao Wen, Junxiao Yang, Bin He, ZhongweiGu, Preparation of monodisperse magnetite nanoparticles under mild conditions, Current Applied Physics 8 (2008) 535.

DOI: 10.1016/j.cap.2007.09.003

Google Scholar

[24] Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning, X. P. Luo, D. Y. Tian, D. Xi, 2004, Synthesis of magnetite nanoparticles in W/O micro-emulsion, J. Mater. Sci. 39 (2004) 2633.

DOI: 10.1023/b:jmsc.0000020046.68106.22

Google Scholar

[25] Xin Liang, Xun Wang, Jing Zhuang, Yongtao Chen, Dingsheng Wang, and Yadong Li, Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals, Adv. Funct. Mater. 16 (2006) 1805.

DOI: 10.1002/adfm.200500884

Google Scholar

[26] O. N. Shebanova, P. Lazor, Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation, J. Raman Spectrosc. 34 (2003) 845.

DOI: 10.1002/jrs.1056

Google Scholar

[27] O. N. Shebanova, Peter Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424.

DOI: 10.1016/s0022-4596(03)00294-9

Google Scholar

[28] De Faria, D.L.A., Silva, V., de Oliveia, M.T., Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc. 28 (1997) 873.

DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b

Google Scholar