Magnetofluorescent Nanocomposites Integrating Magnetic Nanoparticles and Near Infrared Quantum Dots for Tumor Cell Targeting

Article Preview

Abstract:

In this work, we report the preparation of MFNCs integrating MnFe2O4 magnetic nanoparticles (MNPs), near infrared CuInS2/ZnS quantum dots (QDs) and poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PEG-PLGA) in a tetrahydrofuran (THF)/water solvent system. It is found that the MFNCs possess high (Mn + Fe) recovery rates, and the optical properties and magnetic relaxivity of the MFNCs are tunable according to the MNP:QD mass ratios. Furthermore, the MFNCs present excellent capability for tumor cell targeting once they are conjugated with bioprobes specific to tumor cells. This study opens an avenue for the MFNCs to be employed in broad biological or biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

May 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. H. Suh, Y. H. Suh and G. D. Stucky, Nano Today, 2009, 4, 27–36.

Google Scholar

[2] S. A. Corr, Y. P. R. Akovich and Y. K. Gun'ko, Nanoscale Res. Lett., 2008, 3, 87-104.

Google Scholar

[3] S. T. Selvan and Biointerphases, 2010, 5, Fa110–Fa115.

Google Scholar

[4] K. D. Mahajan, Q. Fan, J. Dorcéna, G. Ruan and J. O. Winter, Biotech. J., 2013, 8, 1424-1434.

Google Scholar

[5] H. W. Gu, R. K. Zheng, X. X. Zhang and B. Xu, J. Am. Chem. Soc., 2004, 126, 5664–5665.

Google Scholar

[6] A. Quarta, R. Di Corato, L. Manna, A. Ragusa and T. Pellegrino, IEEE Trans. NanoBio., 2007, 6, 298 – 308.

Google Scholar

[7] G. Wang and X. Su, Analyst, 2011, 136, 1783-1798.

Google Scholar

[8] B. S. Kim and T.A. Taton, Langmuir, 2007, 23, 2198-2202.

Google Scholar

[9] J.H. Park, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia and M.J. Sailor, Angew. Chem., 2008, 120, 7394-7398.

DOI: 10.1002/ange.200801810

Google Scholar

[10] J. Kim, J.E. Lee, S.H. Lee, J.H. Yu, J.H. Lee, T.G. Park and T. Hyeon, Adv. Mater., 2008, 20, 478-483.

Google Scholar

[11] E.F. Erogbogbo, K.T. Yong, R. Hu, W.C. Law, H. Ding, C.W. Chang, P.N. Prasad and M.T. Swihart, ACS Nano, 2010, 4, 5131-5138.

DOI: 10.1021/nn101016f

Google Scholar

[12] H.M. Kim, H. Lee, K.S. Hong, M.Y. Cho, M. -H. Sung, H. Poo and Y.T. Lim, ACS Nano, 2011, 5, 8230-8240.

Google Scholar

[13] R. Di Corato, N.C. Bigall, A. Ragusa, D. Dorfs, A. Genovese, R. Marotta, L. Manna and T. Pellegrino, ACS Nano, 2011, 5, 1109-1121.

DOI: 10.1021/nn102761t

Google Scholar

[14] J. Woods and M. Mellon, Ind. Eng. Chem. Anal. Ed., 1941, 13, 551–554.

Google Scholar

[15] J. Zimmer, S. Kim, S. Ohnishi, E. Tanaka, J. Frangioni and M. Bawendi, J. Am. Chem. Soc., 2006, 128, 2526-2527.

Google Scholar

[16] S. Laurent, D. Forge, M Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 2008, 108, 2064–2110.

DOI: 10.1021/cr068445e

Google Scholar

[17] H.B. Na, I.C. Song and T. Hyeon, Adv. Mater., 2009, 21, 2133-2148.

Google Scholar

[18] C. Xu and S. Sun, Adv. Drug Deliv. Rev., 2013, 65, 732-743.

Google Scholar

[19] O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson and M. Zhang, Cancer Res., 2009, 69, 6200–6207.

DOI: 10.1158/0008-5472.can-09-1157

Google Scholar

[20] J. L. Kovar, E. Curtis, S. F. Othman, M. A. Simpson and D. M. Olive, Anal. Biochem., 2013, 440, 212-219.

Google Scholar

[21] E. M. Burns, G. D. Dobben, T. W. Krukeberg and P. K. Gaetano, Adv. Neurol., 1981, 30, 159-165.

Google Scholar