[1]
D. J. Hartl and D. C. Lagoudas: Aerospace applications of shape memory alloys, P. I. Mech. Eng. G-J. Aer., pp.535-552, (2007).
Google Scholar
[2]
L. Petrini and F. Migliavacca: Biomedical applications of shape memory alloys, J. Metall., p.501483, (2011).
Google Scholar
[3]
O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster and M. L. Young: Shape memory alloy actuator design: CASMART collaborative best practices and case studies, Int. J. Mater. Des., 10, pp.1-42, (2014).
DOI: 10.1007/s10999-013-9227-9
Google Scholar
[4]
F. T. Calkins and J. H. Mabe: Shape memory alloy based morphing aerostructures, J. Mech. Des., Vol. 132, 111012, (2010).
DOI: 10.1115/1.4001119
Google Scholar
[5]
O. E. Ozbulut, S. Hurlebaus, R. Desroches: Seismic response control using shape memory alloys: A review, J. Intell. Mater. Syst. Struct., Vol. 22, pp.1531-1549, (2011).
DOI: 10.1177/1045389x11411220
Google Scholar
[6]
G. Song, N. Ma and H. -N. Li: Applications of shape memory alloys in civil structures, Eng. Struct. Vol. 28, pp.1266-1274, (2006).
DOI: 10.1016/j.engstruct.2005.12.010
Google Scholar
[7]
J. Dong, C. S. Cai and A. M. Okeil: Overview of potential and existing applications of shape memory alloys in bridges, J. Bridge Eng., Vol 16, pp.305-315, (2011).
DOI: 10.1061/(asce)be.1943-5592.0000145
Google Scholar
[8]
A. Anderson, D. Pedersen, A. Sivertsen and S. Sangesland: Detailed study of shape memory alloys in oil well applications, SINTEF Petroleum Research, Trondheim, Norway, Tech Rep. 32. 0924. 00/01/99, July (1999).
Google Scholar
[9]
Y. Bellouard: Shape memory alloys for microsystems: A review from a material perspective, Materials Science & Engineering A, Vol. 481-482, pp.582-589, (2008).
DOI: 10.1016/j.msea.2007.02.166
Google Scholar
[10]
L. Machado, M. Savi: Medical applications of shape memory alloys, Brazilian Journal of Medical and Biological Research, Vol. 36, pp.683-691, (2003).
DOI: 10.1590/s0100-879x2003000600001
Google Scholar
[11]
T. Duerig, A. Pelton and D. Stockel: An overview of nitinol medical applications, Material Science & Engineering A, Vol. 273-275, pp.149-160, (1999).
DOI: 10.1016/s0921-5093(99)00294-4
Google Scholar
[12]
N. B. Morgan: Medical shape memory alloy applications – the market and its products, Material Science & Engineering A, Vol. 378, pp.16-23.
Google Scholar
[13]
J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. -X. Wagner and G. Eggeler: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mat., pp.3444-3458, (2010).
DOI: 10.1016/j.actamat.2010.02.019
Google Scholar
[14]
N. Zhou, C. Shen, M. -X. Wagner, G. Eggeler, M. Mills and Y. Wang, Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni, Acta Mater., vol. 58, pp.6685-6694, (2010).
DOI: 10.1016/j.actamat.2010.08.033
Google Scholar
[15]
T. Baxevanis, A. Cox, and D. Lagoudas: Modeling of the precipitation effects on the effective thermo-mechanical response of NiTi Shape Memory Alloys, ActaMech, Vol. 225, pp.1167-1185, (2014).
DOI: 10.1007/s00707-013-1071-3
Google Scholar
[16]
D. Lagoudas: Shape Memory Alloys: Modeling and Engineering Applications, Springer, New York (2008).
Google Scholar